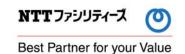
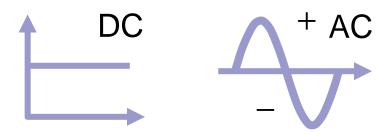
直流って使える?


平成18年7月13日 株式会社 NTTファシリティーズ 研究開発本部 廣瀬 圭一

資料構成

- ■直流って何?
- ■どれくらいの効果があるの?
- ■直流は危ないの?
- ■直流給電の推進活動状況(国内外)



直流って何?


- 直流(DC: Direct Current)
- 時間により、電圧や電流など正負の方向が変わらない
- 19世紀後半、エジソンにより直流システムが導入され、 当時の電力システムの主流であった

- 交流(AC: Alternating Current)は大きさと向きが絶えず変化
- 周波数は50 or 60Hz (飛行機⇒400Hzを使用) (電圧は、国・地域によりバラバラ)

100,110,120,200, 220,230,240V...

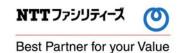
身の回りの直流

- 直流送電
- 電気鉄道・地下鉄
- 電話・通信システム PoE (Power over Ethernet)
- 自動車
- PC、携帯、PDAなど
- チップ、ICなど
- ※エアコンやインバータなど、多くの機器も AC ⇒ DC ⇒ ACに変換し電力を利用

±250kV 等

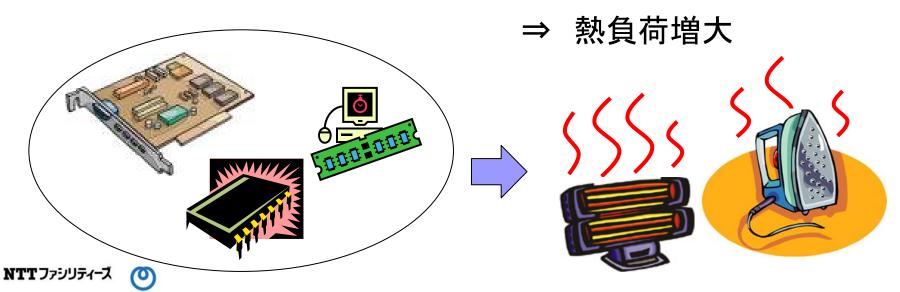
1500,750,600V

48V


12V,24V (42V?)

12 ~ 18V 程度

5V以下

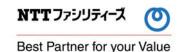


IT機器・IT分野の現状

- 基盤・チップはDCで動作している
- IT装置内部、もしくはアダプタで、AC⇒DCへ変換
- IT装置は電熱器と同じ? ⇒ チップ動作が熱となる
- データ処理量、トラフィック量は年々増加

サーバ等による電力消費は増加の一途

■米国の試算結果例

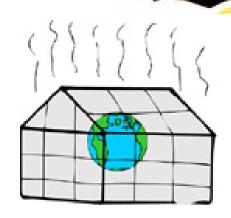

	2000年	2004年	比率
□サーバ台数	188万台 ⇒	275万台	146%
□消費電力	10.1TWh ⇒	14.6TWh	145%

■ 日本の場合...

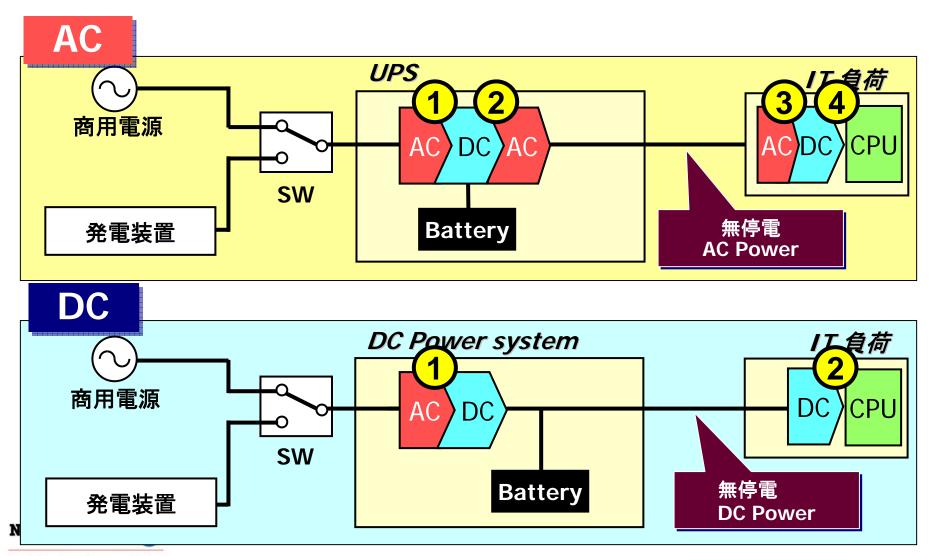
	2000年		2004年	比率
□ サーバ台数	10万台	\Rightarrow	44万台	440%

□消費電力?? サーバの導入台数に比例し、急増(推定)

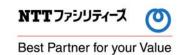
出展: 米国LBNL, High Performance Buildings: Data Center Server Power Supplies, 2005 Dec. 総務省, 平成17年情報通信白書



直流給電のメリットは?


- IT機器など本来直流で動作する負荷への 電力変換段数が少なくなると…
- 変換損失(熱)が減少
 - □電気料金削減 ⇒ CO2削減にもつながる
 - □空調設備のスリム化
 - □部品故障率の低減
- 設備・機器の部品点数が減少
 - □ 小型(省スペース)・軽量・コスト削減
 - □ 信頼度の向上(故障率の低減)

AC給電とDC給電の方式比較



どれくらいの効果があるの?

- "IT運用の電気代">>"ハードウェア" のコスト となる可能性あり(Googleのエンジニアが警告) (CNET News.com 2005年12月12日)
- ITシステムやデータセンタの運用コスト削減努力
 - □ 24時間×365日連続して動作
 - □運用年数が長くなるほど、効率化の効果は大
 - □ランニングコストとしての電気代は無視できない

直流給電による効率化の検討

- NTTファシリティーズ
- FT(フランステレコム)
- チップメーカ
- 直流入力サーバベンダ
- 米国DCプロジェクト

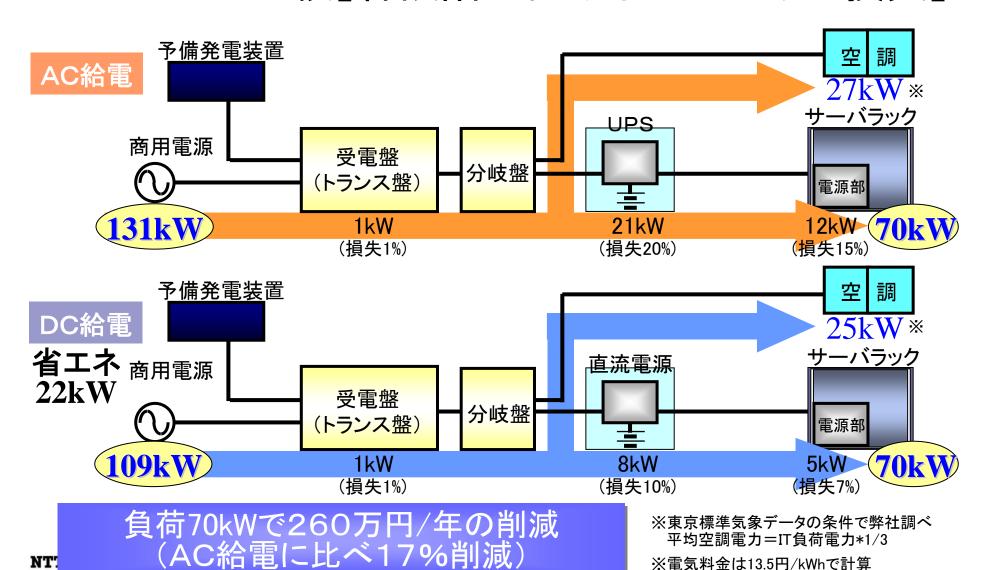
約20%

8~16%(空調分含まず)

13~22%

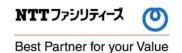
最大30%程度

10~20%



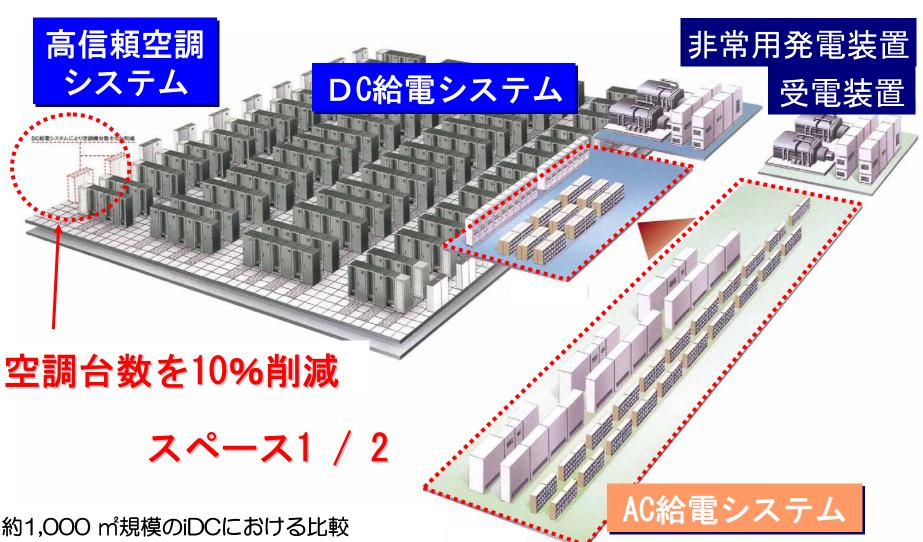
容量、方式、電圧等により異なるが、直流給電により概ね10~30%程度の給電効率を改善(省エネ)可能

ACとDCの比較【各段階におけるエネルギー損失】



AC給電とDC給電の総合比較 (NTT-F社試算による)

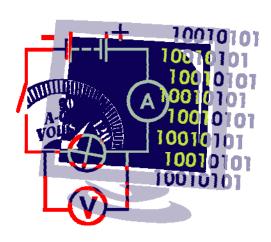
DC給電方式のメリット		
電気料金	約20%の省エネ ^{※1}	
空調台数	10% 減少	
電源スペース	1/2 (蓄電池含む)	
高信頼度	信頼度 10倍	
保守性	無停電	


※1 1,000㎡規模データセンターにて試算

ACとDCの電源スペース比較イメージ

※約1,000 ㎡規模のiDCにおける比較 (消費電力を3kW/ラック、蓄電池の保持時間 を30分として算出)

Copyright © 2006 NTT Facilities, Inc. All rights reserved.


直流は危ない?

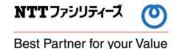
- ■電圧に関する規定
- ■感電

⇒最悪火災に至る)

■作業時の安全及び効率性

電圧に関する規定

- ■接触電圧の許容限界値(JIS C 0364-4-413)

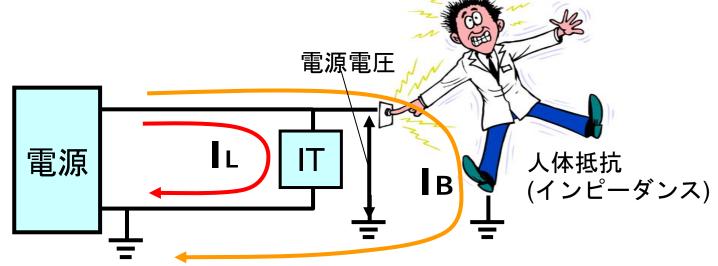

 - □交流電圧 50V □直流電圧 120V

規定環境条件下の安全電圧

- ■直接接触保護
 - □交流電圧 25V
 - □直流電圧 60V

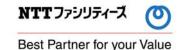
規定条件下では保護は不要

上記値は、危険発生の抑制や生命の保護を規定する厳密な限界値 ではないため、誤解や拡大解釈をしてはいけない。



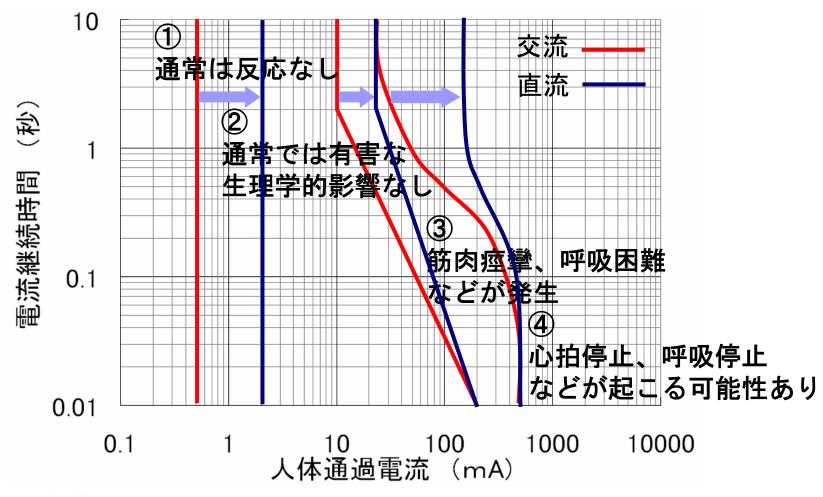
人体に流れる電流(感電時)

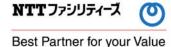
■人体に流れる電流


通過電流 l_B = 電源電圧÷ (人体抵抗 $+ \alpha$)

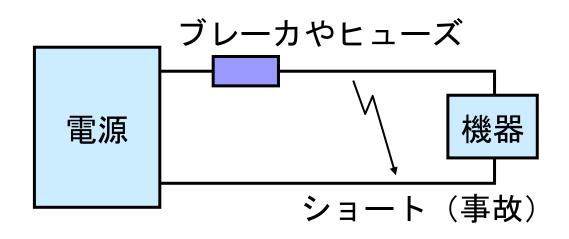
※電圧が高いほど、多く電流が流れる!

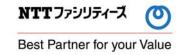
■人体抵抗を1kΩとした場合、


AC100V $I_B = 100 \div 1000 = 0.1A$ DC48V $I_B = 48 \div 1000 = 0.048A$



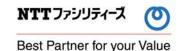
感電耐量について(IEC-497-1)


出典: 竹谷是幸、IEC規格による電気安全(理工図書)



過電流保護

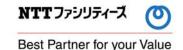
- DC48V等の電圧の低い直流給電は、適切に扱えば、危険性は交流給電(例えば、100Vや200V)よりも少ない。
- ただし、ショート事故や火災の危険性を防ぐため、交流給電と同様に、ブレーカやヒューズによる、過電流保護は必要。



直流用接続プラグ(NTT-F社の例)

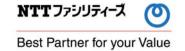
- ・コネクタ最大電流=10Aor20A/コネクタ
- ・コンセントバー最大電流=40A/台
- 38 m㎡ケーブル入線可能 (1タイプ)

ケーブル



コンセント・プラグ(北欧)

- ・サイズは、北欧、ドイツなどで使われている一般的なコンセント(AC)と同等。
- ・現在、スウェーデン国内にて規格検討中(国際規格化も視野に入れている)。

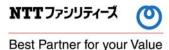


米国直流プロジェクトの例(暫定)

日経BP社 Tech-On WEBサイトにも紹介されたプロジェクト 2006年06月26日

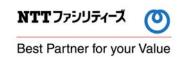
IT分野への直流給電推進活動

- INTELEC 電子通信エネルギー国際会議
 - □ 1997年~
 - □ IEEE(米国電気電子学会)が協賛
- IT時代の直流化研究会
 - □ 2003年~
 - □日本国内の推進活動
- DC Demonstration Project
 - □ 2006年6月~ カリフォルニアで実証試験開始
 - □ Intel,Sun,HP,IBM,Ciscoなどが参加
 - □ NTTファシリティーズもメンバーの一員です



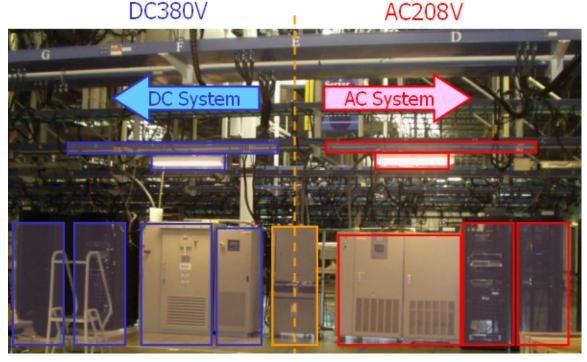
INTELECによる直流推進(1997年~)

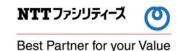
- メンバー
 - □ NTT(日本)、BT(英国)、ベルアトランティック(米国) テリア(スウェーデン)
 - □ ノーテル(米国)、エリクソン(スウェーデン)
- ワーキング(調査研究)活動、啓蒙活動



IT時代の直流化研究会(2003年~)

- ■メンバー
 - □大学教授、研究者
 - □省庁関係者
 - □ITベンダ
 - □設備メーカ
 - □電力、ガス会社
 - □通信事業者
- 研究・啓蒙(PR)活動
- WEBサイト http://www.dc-powers.com/

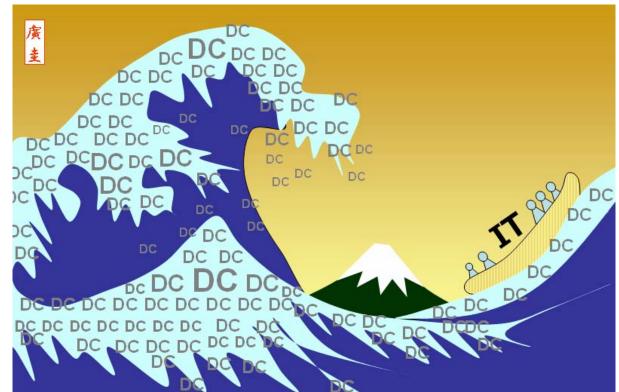




DC Demonstration Project(2006年~)

- メンバー
 - □ ITベンダ
 - □ 研究機関
 - □ 省庁関係者
 - □ 設備メーカ
 - □ 通信事業者

- 直流(380V)と交流(208V)の消費電力を実測比較
- WEBサイト http://hightech.lbl.gov/dc-powering/dcp.html
- マスコミ(WEB、雑誌)にも取上げられた



最後に

- 直流という、新しい波がやってきました。
- さまざまな、メリットが期待できると思います。
- "直流という波"を上手く乗りこなしましょう!

