2008年7月9日 電子情報通信学会 インターネットアーキテクチャ研究会

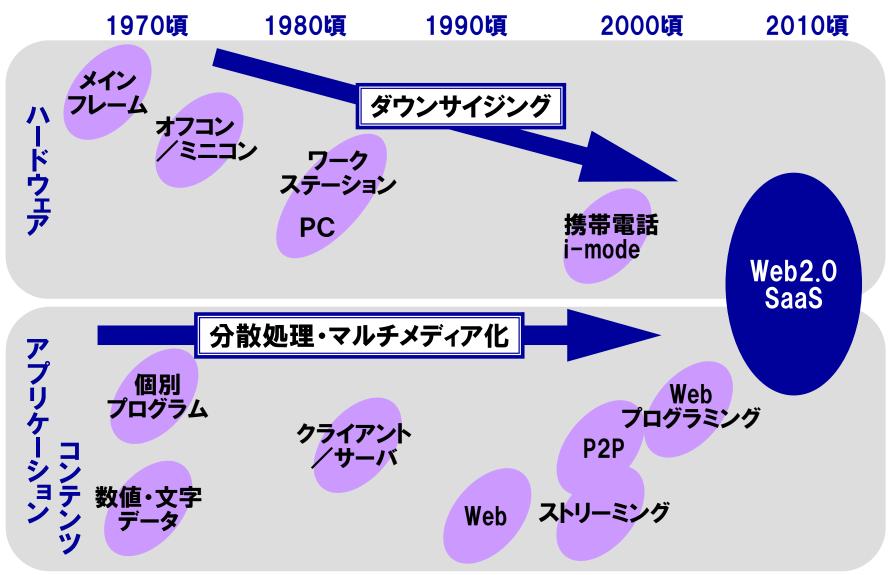
パネル討論

ルータとサーバの運用管理技術(NETCONFの現状と今後)

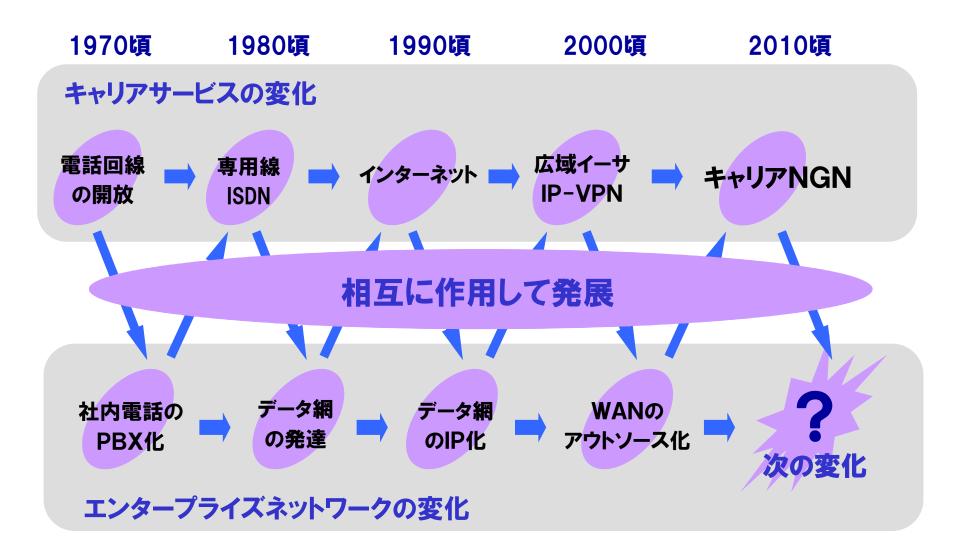
『OANによる新しい運用管理の現状と方向性』

アラクサラネットワークス 先端技術企画部

黒崎 芳行 樋口 秀光

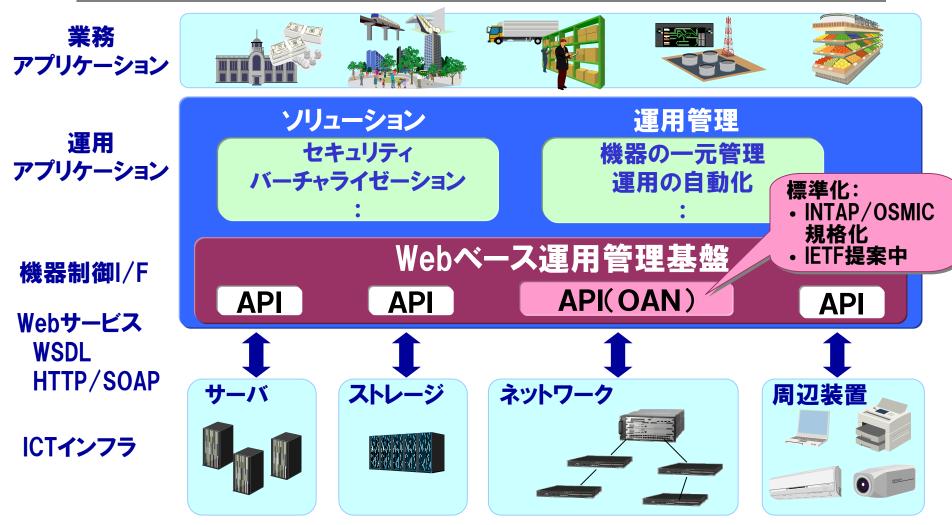

飯島 智之 新善文

木村 浩康 木谷 誠


目次

- 1 OANの背景
- 2 OANの構造
- 3 標準化状況
- 4 ストレージでの実装状況
- 5 サーバでの実装状況
- 6 ON-API活用事例

1 OANの背景(ITのイノベーション)



1 OANの背景(ネットワークのイノベーション)

1 OANの背景(アプリとネットの連携)

ICTシステムと共通のWebベース運用管理がトレンドに

1 OANの背景(運用の課題)

OANは、ネットワーク運用における課題を解決し、システムの安定稼働を支援します。

管理対象装置や機能が急速に増加・複雑化、24時間サービス提供、コスト削減など、ネットワーク管理者が絶対的に不足(人数、スキル)

運用管理が属人的なノウ ハウに支えられているため作 業の一般化(継承、横展開) が出来ない。

単純なミス(設定ミス、コミュニケーション不足)が引き金となり、社会インフラ(金融、交通、行政などのサービス)の停止へと発展する事例が多発。

ビジネスの損害のみならず、社会 的信頼の失墜、監督官庁からの 指導など、企業の存続さえも左右 する。

これからのICTシステムにおけるネットワークの役割は、従来の機能を踏襲し、・・・

突然のシステム変更に も対応出来る柔軟な構 成管理 アプリケーションの動き に合わせた機動的なサー ビスの提供 (動的な帯域割当等) 日々発生する新しいセキュリティ問題への対応

ネットワークの機能を公開し、ユーザの要望に沿った役務の提供を容易 に行える

1 OANの背景(まとめ)

「人」は減るが「トランザクション」は増える

→トランザクションの形態も変化して増加 24Hr365Dayになり、止められないシステムへ

あらゆるところでのアウトソースが進む

→複数の企業との連携があたりまえに システム間連携の為のインターフェィスはWeb技術へ

装置とアプリケーションの境界がドンドンなくなる

→Web技術が全てを包含する形で徐々に仮想化が浸透

2~3年経つと新技術もレガシーになる

→「今出来ない事がいつまでも出来ないという事ではない」が 時間の間隔が非常に短くなってきている

CLI、SNMPの問題を解消し、自動化を実現するAPIを実現

CLI、SNMPの 問題点

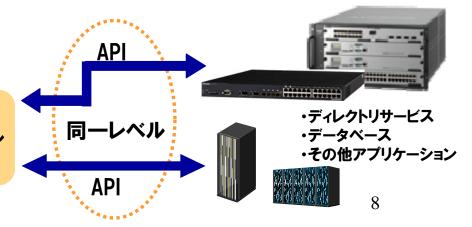
- CLIはコマンドにリターンコード無し
- SNMPはUDPでロストが心配。MIBは細かすぎ

AX-ON-API-SDKによる新しい取組み

自動化による運用コストの低減

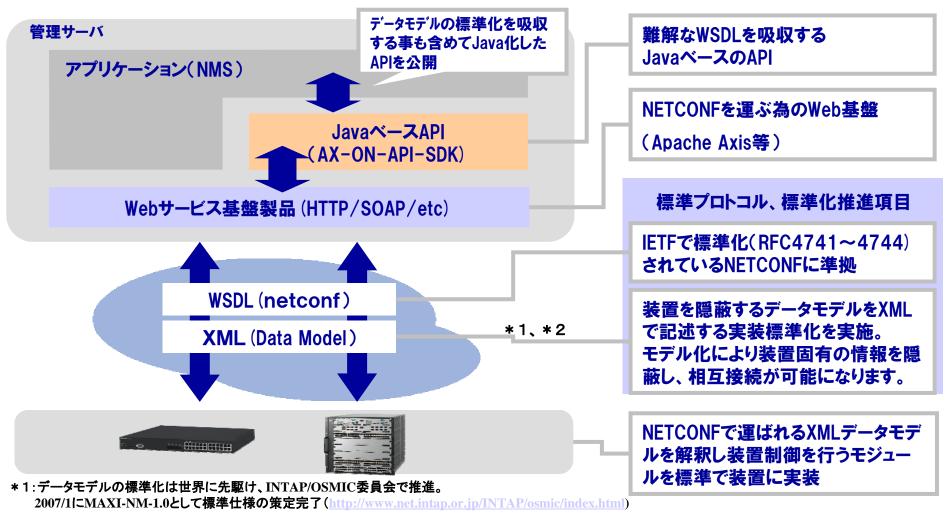
- -リクエスト完結型のAPI リクエスト完結型のAPIによりCLIの問題を解決 (結果確認の為のコマンドが不要です)
- -ICTシステムとの親和性の拡大
 Javaで記述するAPIのライブラリを提供
 業務アプリケーションと同じ様にネットワーク機器を制御可能

標準化技術の活用によるオープン性

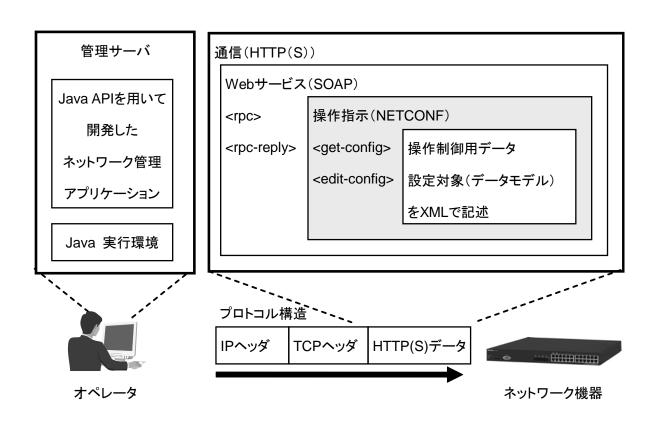

- -標準準拠で相互接続性を確保 「NETCONF」(RFC4741~RFC4744。2006/12) 「MAXI-NM-1.0」(INTAP/OSMIC規格。2007/2) に準拠。市場で広く採用される技術を先取り
- -通信基盤にHTTP/SOAPを利用 セキュリティの確保、通信品質の確保を実現

複雑な業務 から開放

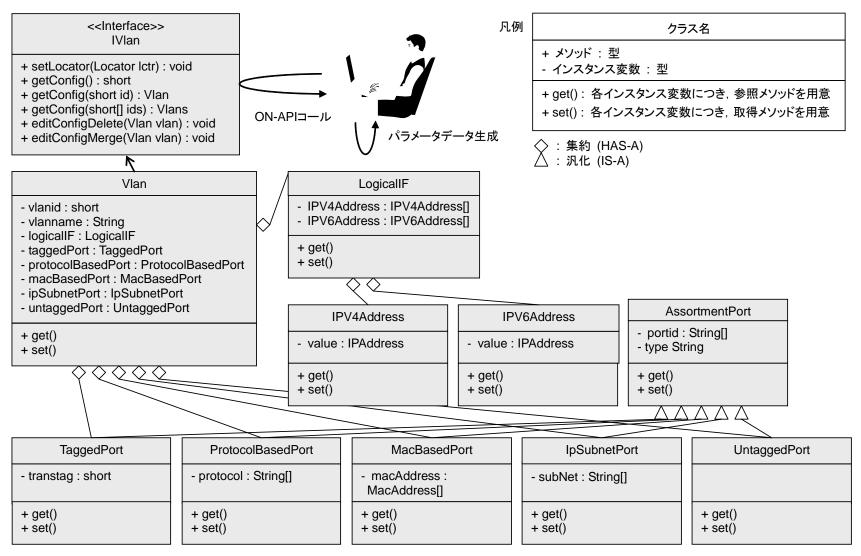
管理アプリケーション

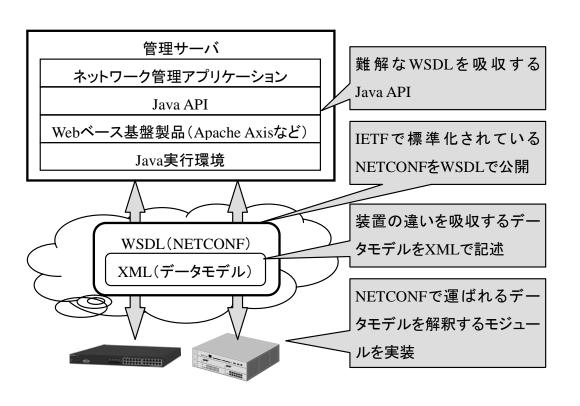


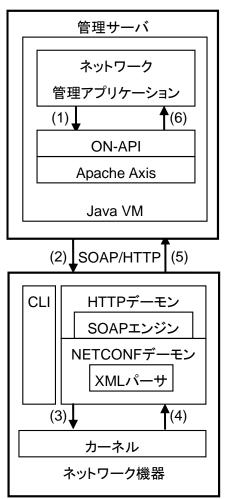
AX-ON-API-SDKで提供する機能 2008/5現在


項目		内容	
	装置情報	・装置名称、ループバックアドレス、FDB(収集のみ)など	
	VLAN情報	·VLAN番号、VLAN名称 ·Trunk/Access/Protocol/MACの4種類のモードなど	
設定 (追加/ 削除/参	インタフェース情報	・物理情報(スロット番号/ポート番号、回線名称など) ・リンクアグリゲーション(LACP/Staticなど)	
照)	フィルタ情報	・MACアドレス、IPアドレス(IPv4/IPv6)、TCP/UDPポート 番号の範囲指定など	
	経路情報	・スタティックルート(ポーリングなど)	
	コンフィグ情報	・スタートアップコンフィグ/ランニングコンフィグ	
その他	NEW OS管理	·装置OSの入れ替え(イメージファイル配置、アップデート)	

NEW : AX-ON-API-SDK Ver1.3


OANはWebサービスで装置制御が行える構造を採用 利用者の操作性を考慮し、JavaによるAPIで開発の容易性を訴求


- 転送プロトコルとしてNETCONFを利用
- 機器操作のモデルはXMLで記述



VLANのデータモデル図

- 管理アプリケーションインターフェィスをJavaで提供
- WSDLによる相互接続性をJavaで隠蔽

ON-APIを利用した定量的な評価の一部を以下に示します。

効果1 アクセスリストのフロー検出条件4000件設定の比較例

<測定方法>

CLI: TeraTermのMacroを用いて1コマンドずつ投入

API: APIで100件のフロー検出条件の配列を生成し、APIで100件一括設定を40回繰り返す

<測定結果>

CLI: 1時間10分(1コマンドの応答が約1秒)

API:7分16秒

効果2 某ISV会社での操作アクセス頻度

<測定結果> APIベース CLIベース

VLANへの1ポート追加 2.8秒/1メソッド 13秒/7CLI

VLANへの10ポート追加 2.9秒/1メソッド 114秒/61CLI

本資料は若干変わっています

OANを利用する事のメリットとデメリット

項目	メリット	デメリット
モデル化による 機種依存性の排除	機器/メーカに依存した操作が不要	装置実装が重たくなる (Web技術の装置実装)
	アプリケーション開発の単純化	エンジニアの習熟 アプリの開発
ネットワーク操作の API化による効率	自動化を容易に実現 (人為的ミスの低減が可能)	エンジニアの習熟 アプリの開発
向上(自動化、高速 化)	大量の変更作業が容易かつ高速に変更が可能 (省エネ、クラウドコンピューティング、 仮想化、等への対応が可能)	
トランザクション型の操作(結果が返る)	自動化を容易に実現	なし
既存資産への対応	メンテナンスが容易 機種追加でも修正量が少	新規に再作成

3 標準化状況(INTAP/OSMICでの検討状況)

注意:以下の資料はINTAP/OSMIC WG4で議論されている資料から抜粋しています。 正式な情報としては、INTAP/OSMIC委員会のから発行されている情報で確認をお願いします。

•経緯

IETFでネットワークの新しい管理技術標準(netconf)の検討が加速。 サーバ系のDMTF、ストレージ系のSNIAと同様のWebサービスによる管理 方式が広まる状況を踏まえて検討を開始した。

•INATP/OSMICでのnetconfネットワーク標準化の経緯

- •2006年2月 OSMIC-WG1の場でnetconfの標準化動向の検討会実施
- -2006年3月 H17年度第5回OSMIC企画委員会で今後のMAXI仕様の

拡張の一部として検討する事について合意。

•2006年5月 準備会を開きnetconfをベースにしたモデル化技術による

構成管理についての標準化方針を確認

•2006年7月 OSMIC企画委員会にてWG4の設置およびWG4での技術検討

を決定

- -2006年8月 第一回WG4会合から技術面の検討を開始
- ■2007年1月 MAXI-NM-1.0としてVLAN、Filter等を規格化

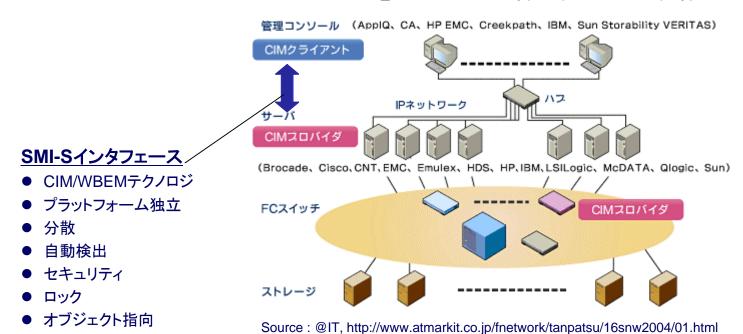
MAXI仕様書

http://www.net.intap.or.jp/INTAP/osmic/business/MAXI-NM-10.pdf

3 標準化状況(IETFでの標準化状況)

- ■67th IETF@San Diego(draft-iijima-netconf-soap-implementation-01)
 - •NETCONF/SOAPアーキテクチャを提案
 - •SOAPの利点として、Apache AxisによるAPIの自動生成機能が使用できること等を紹介
- ■68th IETF@Prague(draft-iijima-ngo-vlandatamodel-01)
 - •AX-ON-API VLANデータモデルを提案
 - •UML図, XMLスキーマを披露
 - •VLANデータモデルのユースケースとして、INTEROP 2007のデモに使用したVLAN設定アプリケーションを紹介
- ■69th IETF@Chicago(draft-iijima-ngo-acldatamodel-00)
 - •AX-ON-API VLANデータモデルを提案
 - •UML図. XMLスキーマを披露
 - •ACLデータモデルのユースケースとして、AMEL(AxMacListEditor)を紹介
- ■70th IETF@Vancouver(draft-iijima-netconf-soap-implementation-04)
 - •NETCONF client & serverの簡単な実装デモを実施
 - •Eclipse, Axis, Ant, Tomcatを用いれば、それらの環境設定, build.xmlと build.propertiesの作成, 10行のソースコード記述だけで動くことを紹介
 - •NETCONF WG ChairのAndyから、Informational RFC化を目指すようにとのコメント

■関連ドラフト


- ➤draft-atarashi-ngo-consider-architecture-01
 - ●サーバ,ストレージとの連携を考慮に入れたNETCONFアーキテクチャを提示

3 標準化状況(Netconf関連の他社状況)

本資料は画面のみです

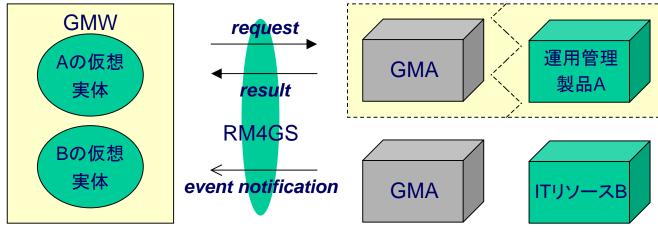
4 ストレージでの実装事例(SNIAでのストレージ系実装例)

- SNIA (Storage Networking Industry Association)
 - ストレージベンダを中心とした業界団体. 技術標準化の取りまとめ等をしている
- SMI-S (Storage Management Initiative Specification)
 - 相互運用を目的としてSNIAが策定した標準仕様
 - DMTF (Distributed Management Task Force)が定義したCIM (Common Information Model)やWBEM (Web-Based Enterprise Management)に基づく
 - CIM:プラットフォームやOSに依存しないコンピュータのオブジェクト指向管理モデル
 - WBEM:ネットワーク上のデバイスをWebベースで管理するための仕様

4 ストレージでの実装事例

(SNIA SMI-S CTP (Conformance Testing Program) 結果)

ベンダ名	製品名 ※斜字体:クライアント側製品	プロバイダ側テ スト SMI-Sのバージョ ン	クライアント側テスト SMI-Clientのバージョ ン	最新テスト バージョン
EMC	CLARiiON, EMC ControlCenter v6.0	1.2	1.1	1.2.0.69
Hitachi Data Systems	Universal Storage Platform V, HiCommand Storage Services Manager v5	1.2	1.1	1.2.0.69
日立	SUNRISE, Universal Storage Platform	1.2	-	1.2.0.69
НР	StorageWorksDisk Array XP, Storage Essentials v5.1	1.2	1.1	1.2.0.50
IBM	Tivoli, TotalStorage Productivity Center v3.3.2	1.2	1.1	1.2.0.50
Brocade	Silkworm	1.1	-	1.1.0.98
Cisco	MDS 9000	1.1	-	1.1.0.45
Emulex	LightPulse FC HBA, LightPulse	1.1	-	1.1.0.85
富士通	ETERNUS	1.1	-	1.1.0.98
LSI Logic	Engenio Storage Systems	1.1	-	1.1.0.98
McDATA	Intrepid, Spherion,	1.1	-	1.1.0.98
NEC	NEC Storage, iStorage	1.1	-	1.1.0.94
QLogic	SANblade FC HBA 2300, SANbox2	1.1	-	1.1.0.85
CA	BrightStor Resource Management v11.6	-	1.1	
Symantec	Veritas CommandCentral		1.1	


4 ストレージでの実装事例(相互運用可能な機能(一部))

機能		内容	実績テストバージョン			
			EMC	HDS	HP	IBM
HTTP/SSL通信			1.2	1.2	1.2	1.2
SLP Discove	ery		1.2	1.2	1.2	1.2
Array管理	Volume Creation	ストレージ内に新規ボリュームを作成可能	1.2	1.2	1.2	1.2
	Volume-FC Target Port-HBA Initiator Allocation Creation					
	Volume-FC Target Port-HBA Initiator Allocation w/ Volume Addition					
Fabric管理	Zone Create		-	-	1.0	-
	Zone Add Member	Zoneに新規メンバ、ポート、WWNを追加可能				
	Zone Remove Member	Zoneからメンバ、ポート、WWNを削除可能				
	Zone Delete					
	Zoneset Create					
	Zoneset Add Member	ZonesetにZoneを追加可能				
	Zoneset Remove Member	ZonesetからZoneを削除可能				
	Zoneset Delete					
	Zoneset Activate	不活性Zoneを活性化可能				
Switch管理	Port Enable	ポートを活性化可能	_	-	1.0	-
	Port Disable	ポートを不活性化可能				

5 サーバ系実装事例(ビジネスグリッド)

- ビジネスグリッドコンピューティングプロジェクト
 - 参画団体:経産省, IPA(情報処理推進機構), 富士通, 日立, NEC
 - 2006年3月終了
 - 2006年5月より「ビジネスグリッド推進コンソーシアム」へ
 - 構成要素
 - GMW: Grid MiddleWare
 - GMA: Grid Management Agent
 - 運用管理製品、ITリソースごとにGMAを作成し、異なる操作の違いを吸収
 - ITリソース: SystemWalker, JP1, VALUMOが管理するネットワーク, ストレージ, サーバ (Web, DB, AP)
 - GMA SDKによるJavaアプリケーション開発
 - RM4GS: Reliable Messaging for Grid Services
 - XMLベース

5 サーバ系実装事例(GMA SDK)

- GMA(Grid Management Agent: グリッド管理エージェント) SDK
 - 「ビジネスグリッドコンピューティングプロジェクト」の一成果物
 - 他成果物は、RM4GS v1.1など
 - WSDM(Web Services Distributed Management) 1.0 準拠
 - OASISにて策定されたWebサービスによるハードウェア/ソフトウェア管理IF
 - 開発環境
 - OS: RedHatLinux2.1/3.0, Windows 2000 Server
 - Java: Java2 Runtime Environment 1.4.2
 - J2EE server (for RM4GS): J2EE RI 1.4
 - ライブラリ: Log4J 1.2.8, XML beans 2.0, RM4GSなど
 - 機能
 - GMWとのXMLメッセージ送受信
 - GMWへのイベント通知
 - 仮想実体のID管理機能
 - 「ITリソースの例えばIPアドレス」と「GMWにおける一意なID」とのマッピング
 - FTPを用いてGMWからの設定ファイル取得機能
 - FTPを用いてGMWへバックアップファイル転送機能
 - ログ管理機能

5 サーバ系実装事例(Java API(機能の一部))

機能	Java API	内容
GMA実装 BGOperationAdapterFactory#getAdapter()		GMAを実装
	BGGmaOperation#start(BGOperationAdapter Factory adapterFactory, String gmwHost, String gmaHost, String gmaName, GmaLog gmaLog, Properties options)	GMAをスタートさせ、GMWからのリクエスト受付
メッセージ 送受信	BGParseOperationRequest#getBodyXmlDocument ()	GMWから送られるXMLメッセージのBody要 素取得
	BGCreateResultMessage#setBody(String body)	GMWへ送るXMLメッセージのBody要素設定
イベント通知	GmaEvent#sendEventMessage(String gmaMsg)	GMWヘイベント通知
ID管理	ObjectIDmanager#registerASID(in ASID, in ASProprietaryID)	IDマッピングテーブルにID登録
	ObjectIDmanager#removeASID(in ASID)	IDマッピングテーブルからID削除
File取得	BGFileTransferAgent#getFile(String from, String to)	GMWから設定ファイル取得
	BGFileTransferAgent#getFiles(String from, String to)	GMWから複数の設定ファイル取得
File転送	BGFileCollectorAgent#transferFile(BGGmaEndpointReference asURI, String FilePath, String HostingDirectory)	GMWへバックアップファイル送信
ログ管理	GmaLogForLog4J#error(Object message)	エラーレベルでログ出力

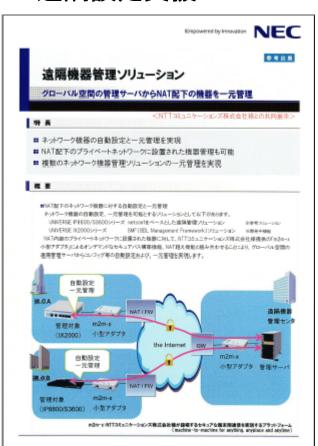
5 サーバ系実装事例(ITリソースのオペレーション)

- BGOperationAdapter#invokeCommand(String operdata)
 - GMAの上記Java APIの引数operdata(XMLで記述)に、GMWから以下のWSDMオペレーションを渡すことによって、GMAは所望の設定をITリソースに対して実行

分 類	オペレーション	内容
取得	<getresourceproperty></getresourceproperty>	リソース内の指定されたプロパティの値を取得
	<getmultipleresourceproperties></getmultipleresourceproperties>	リソース内の指定されたプロパティ群の値を取得
	<queryresouceproperties></queryresouceproperties>	Xpathを用いて、リソース内の指定されたプロパティドキュメントを取得
	<queryrelationshipbytype></queryrelationshipbytype>	リソースの関連情報を取得
設定	<setresourceproperties></setresourceproperties>	リソースが持つプロパティドキュメント内のプロパティを変更(insert, update, and delete)
通知	<subscribe></subscribe>	イベント通知を要求
	<getcurrentmessage></getcurrentmessage>	最後のイベントの通知を要求
	<pausesubscription></pausesubscription>	イベント通知の一時停止を要求
	<resumesubsciption></resumesubsciption>	一時停止したイベント通知の再開を要求

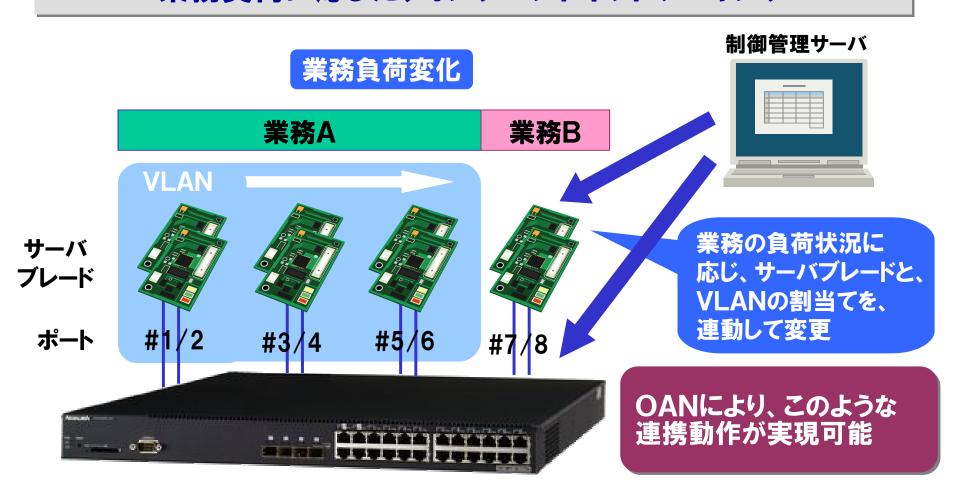
6 InteropでみつけたON-API活用事例

本資料は画面のみです


認証・検疫ソリューション

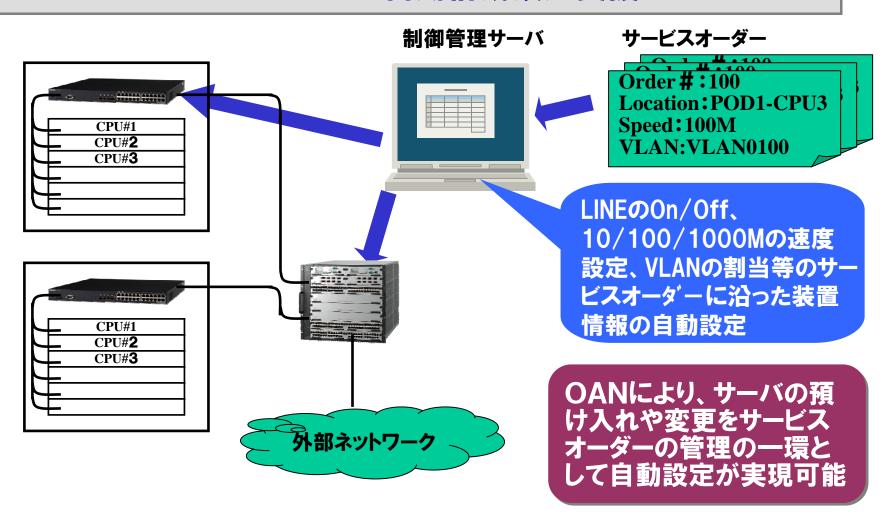
入退出管理&セキュリティ

遠隔設定支援


6 ON-APIを使ったアプリケーション

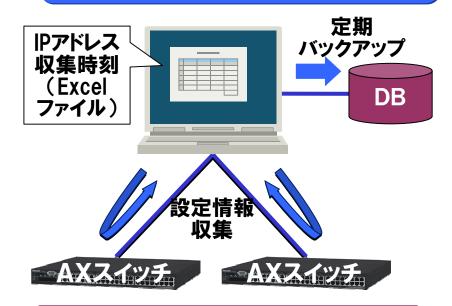
ON-APIを使ったアプリケーションのデモンストレーション を行います。

- ー 装置OSのアップデート
- ー 装置Configの自動収集
- ー ループ検知

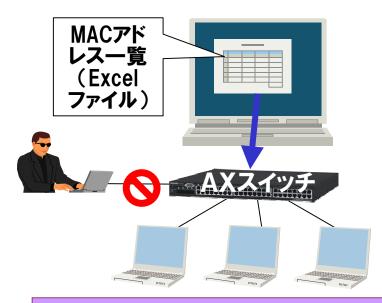

6 ON-API活用事例(適用例:1)

業務負荷に応じた、オンデマンドネットワーキング

6 ON-API活用事例(適用例:2)


データセンターの自動構成設定支援

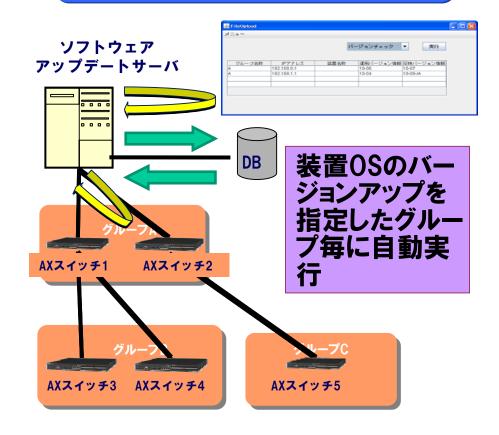
6 ON-API活用事例(適用例:3)


OANによる運用自動化

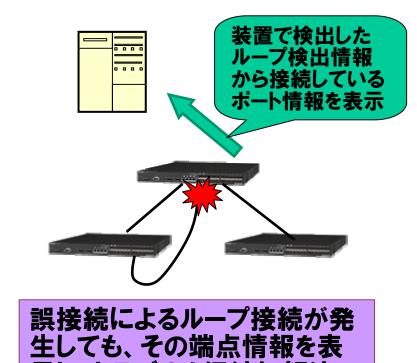
設定情報(コンフィグ)の自動収集と定期バックアップ

ExcelファイルでIPアドレスと 収集時刻を指定して、各スイッチ の設定情報を自動収集

MACフィルタの一括設定



Excelファイルで指定された MACアドレスのみを許可する フィルタを一括設定


6 ON-API活用事例(適用例:4)

OANによる運用自動化

装置OSのバージョンアップ

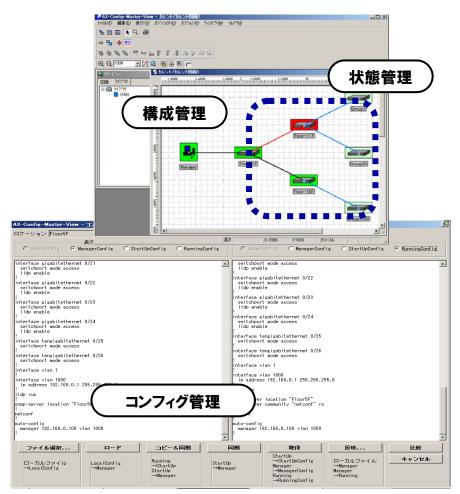
ループ検知・表示

示し、トラブルを迅速に解決

6 ON-API活用事例(AX-Config-Master)

AXCMは、ネットワーク構成を管理し、装置の状態管理や構成の変更、稼働情報の表示等を一元的に行います。

ネットワーク構成の一元管理


- ネットワーク上の機器やPCを一元的に管理し、 全体を見ながらの運用が可能

コンフィグ情報の一元管理

- 装置のもつコンフィグ情報を一元管理、 障害時のダウンロードや機器での変更時の アップロードが可能

ネットワーク状態の一元管理

- 装置や回線の障害を検知し、ネットワークマップ 上で表示
- 障害箇所の特定が容易
- VLANの状態を画面上で確認(見える化)可能

Thank You!!

AlaxalA

http://www.alaxala.com/