IPv6 address architecture on point-to-point link

Matsuzaki 'maz' Yoshinobu <maz@iij.ad.jp>

IPv4 and IPv6

- similar in routing, forwarding and so on
- The basis are almost same, but...
 - IP Header is a little bit different
 - more bits in the address field
 - IPv4 32bit -> IPv6 128bit

IPv4 packet forwarding

 Packets are delivered directly on the same segment.

segment. inet 192.168.0.1 netmask 255.255.255.0 192.168.0.0-192.168.0.255 are on the same segment ether frame dst-mac src-mac dst-ip src-ip dst-ip src-ip data dst src dst-mac src-mac

ip: 192.168.0.2 ip: 192.168.0.1

arp (Address Resolution Protocol)

- MAC address is needed on Ethernet.
 - We know destination IPv4 address, then we need to know the layer 2(MAC) address from the IPv4 address.
- ARP
 - RFC826

```
arp who-has 192.168.0.2 tell 192.168.0.1
 0x0000:
          ffff ffff ffff 0019 bb27 37e0 0806 0001
 0x0010:
          0800 0604 0001 0019 bb27 37e0 c0a8 0001
          0000 0000 0000 c0a8 0002
 0x0020:
arp reply 192.168.0.2 is-at 00:16:17:61:64:86
          0019 bb27 37e0 0016 1761 6486 0806 0001
 0x0000:
 0x0010:
          0800 0604 0002 0016 1761 6486 c0a8 0002
 0x0020:
          0019 bb27 37e0 c0a8 0001 0000 0000 0000
 0x0030:
          0000 0000 0000 0000 0000 0000
```

IPv6 packet forwarding

Packets are delivered directly on the same

ip: 2001:db8::beef:cafe ip: 2001:db8::1

ndp (Neighbor Discovery Protocol)

- MAC address is needed on Ethernet.
 - We know destination IPv6 address, then we need to know the layer 2(MAC) address from the IPv6 address.
- ndp
 - RFC4861
 - it uses ICMPv6 to solicit MAC address of destination host.

ndp - solicitation and advertisement

```
IP6 2001:db8::1 > ff02::1:ffef:cafe
ICMP6, neighbor solicitation, who has 2001:db8::beef:cafe
source link-address option: 00:19:bb:27:37:e0
       0x0000:
              3333 ffef cafe 0019 bb27 37e0 86dd 6000
       0x0010:
              0000 0020 3aff 2001 0db8 0000 0000 0000
       0x0030: 0001 ffef cafe 8700 9a90 0000 0000 2001
       0x0040: 0db8 0000 0000 0000 0000 beef cafe 0101
       0x0050: 0019 bb27 37e0
IP6 2001:db8::beef:cafe > 2001:db8::1
ICMP6, neighbor advertisement, tgt is 2001:db8::beef:cafe
destination link-address option: 00:16:17:61:64:86
       0x0000: 0019 bb27 37e0 0016 1761 6486 86dd 6000
       0x0010: 0000 0020 3aff 2001 0db8 0000 0000 0000
              0000 beef cafe 2001 0db8 0000 0000 0000
       0x0020:
       0x0030:
              0000 0000 0001 8800 c1fd 6000 0000 2001
       0x0040:
               0db8 0000 0000 0000 0000 beef cafe 0201
       0x0050: 0016 1761 6486
```

network architecture

 inter-router connections, router-hosts segments and so on.

IPv4 address architecture

We assign optimal net blocks based on needs.

IPv6 address architecture

• /64 is used everywhere.

point-to-point link

- It mainly used on an inter-router link.
 - POS link, Serial link and the like
 - useful for troubleshoot
 - Actually a tunnel link is also point-to-point link.
- Routers just throw packets to an opposite router via the link.
 - A layer2 address resolution like arp is not required.

point-to-point link and addressing

- We configured an address of the opposite router on each link in ancient days.
 - remote-address or dest_address
 - There are a few routers that still support remoteaddress.
- Now we use /30s or /64s for a point-to-point link as if there is a segment on the link.
 - We don't care if the link is Ethernet or POS.

/30 for inter-router link

- 10.0.0.0/30
 - 10.0.0.0 <- network address</p>
 - 10.0.0.1 <- Router A
 - 10.0.0.2 <- Router B
 - 10.0.0.3 <- broadcast address

/64 for inter-router link

- 2001:db8::/64
 - 2001:db8::0 <- Subnet Router-anycast address</p>
 - 2001:db8::1 <- Router A</p>
 - 2001:db8::2 <- Router B</p>
 - 2001:db8::3-2001:db8::ffff:ffff:ffff <- unused

even if you assign /126 for the link

- 2001:db8::/64
 - 2001:db8::0 <- Subnet Router-anycast address</p>
 - 2001:db8::1 <- Router A</p>
 - 2001:db8::2 <- Router B</p>
 - 2001:db8::3 <- unused

directed unused-address packets

- If a packet is coming to the unused-address on the segment....
- Ethernet
 - Layer2 address resolution is performed by arp or ndp. And icmp host-unreach message is replied if no one use the address.
- point-to-point link
 - The packet will be thrown to the link....

point-to-point link and unusedaddress

- One assigns 10.0.0.0/24 for the link.
 - 10.0.0.1 for Router A and 10.0.0.2 for Router B
- In this case, what is happened if the destination of a packet is 10.0.0.13?

ping pong

- A packet destined for unused-address on the point-to-point link could be loop on the link.
 - In IPv4 case, there is no vacant address, because people use /30s or /31s for these links.
 - In IPv6 case , there are vacant addresses on the link.
- Of course this issue was noticed early, and has been discussed.
 - Actually there is a solution in a RFC.

RFC4443 – ICMPv6

- 3. ICMPv6 Error Messages
- 3.1. Destination Unreachable Message

<snip>

One specific case in which a Destination Unreachable message is sent with a code 3 is in response to a packet received by a router from a point-to-point link, destined to an address within a subnet assigned to that same link (other than one of the receiving router's own addresses). In such a case, the packet MUST NOT be forwarded back onto the arrival link.

RFC says

 When you use 2001:db8::/64 for a point-topoint link, a packet destined for 2001:db8::13 must be dropped as follows destination: 2001:db8::13

2. if destination address is on the link then the packet MUST NOT be forwarded.

awareness is important

- Specs are okay, but implementations are....
 - common matter
- Sometimes 'special cases' might be forgotten, so we have to check these before use it.
 - We might forget,
 - And also vendors might forget.

other ideas for this issue

- Operators need workarounds.
 - − insurance saves us ☺
 - In case of emergency, we really need workarounds.

- 1. link-local addressing
- 2. messy packet-filter
- 3./127 for the link

1. link-local for inter-router link

- In IPv6 case, a router does not require global address for a inter-router link.
 - Only loopback interface needs global address
 - Neighboring routers can exchange routing information by link-local address
- Issues of 'no global address on interfaces'
 - ping from remote site
 - eBGP session (nexthop rewrite is needed)
 - traceroute become useless a bit

2. messy packet-filter

- What we call 'infrastructure ACL'
 - allocate address block for its infrastructure first, then put a filter that denies packets from outside to these addresses.
 - IPv6 has more bits, so we can allocate infrastructure address easily
- Issues
 - how to maintain these filters
 - inter-AS connections

3. /127 for the link

- 2001:db8::2/127
 - 2001:db8::2 <- Router A</p>
 - 2001:db8::3 <- Router B</p>

- No vacant address on the link ©
- This was discussed before

/127 and RFC

- 'use of /127 considered harmful' [RFC3627]
 - The first address is reserved for subnet router anycast address
 - It might cause problems, though almost of all routers do not support the subnet router anycast address at this moment.
 - We can write a RFC that do not use the subnet router anycast address with /127 addressing, but this brings another 'special case'
 - Issue of 'longer prefix other than /64'

Summary

- 'Specs' is not 'Implementation'
 - Check before use
 - please let vendors know when you find a problem
 - caution needed for 'special cases'
 - ping-pong on point-to-point links
 - tunnels are also 'point-to-point'
- Even a small difference between IPv4 and IPv6 might cause some issues for your operation.
 - prejudice or bias