
Global Networking Services Team, Global Foundation Services, Microsoft Corporation

Experiences with BGP in Large Scale Data Centers:

Teaching an old protocol new tricks



Agenda
• Network design requirements

• Protocol selection: BGP vs IGP

• Details of Routing Design

• Motivation for BGP SDN

• Design of BGP SDN Controller

• The roadmap for BGP SDN

2



Design Requirements
Scale of the data-center network:

• 100K+ bare metal servers

• Over 3K network switches per DC

Applications:

• Map/Reduce: Social Media, Web Index and Targeted Advertising

• Public and Private Cloud Computing: Elastic Compute and Storage

• Real-Time Analytics: Low latency computing leveraging distributed 
memory across discrete nodes.

Key outcome:

East  West traffic profile drives need for large bisectional 
bandwidth.

3



Translating Requirement to Design

Network Topology Criteria
Support East <-> West Traffic 
Profile with no over-subscription
• Minimize Capex and Opex

• Cheap commodity switches
• Low power consumption

Use Homogenous Components
• Switches, Optics, Fiber etc
• Minimize operational complexity
• Minimize unit costs

Network Protocol Criteria
• Standards Based
• Control Plane Scaling and Stability 
• Minimize resource consumption 

e.g. CPU, TCAM usage -
predictable and low

• Minimize the size of the L2 failure 
domain

• Layer3 equal-cost multipathing
(ECMP) 

• Programmable
• Extensible and easy to 

automate 

4



Network Design: Topology

• 3-Stage Folded CLOS.

• Full bisection bandwidth (m ≥ n) .

• Horizontal Scaling
(scale-out vs. scale-up)

• Natural ECMP link load-balancing.

• Viable with dense commodity hardware. 
• Build large “virtual” boxes out of small 

components

5

N Links



Network Design: Protocol

Network Protocol Requirements
• Resilience and fault containment

• CLOS has high link count, link failure is common, so limit fault propagation on link 
failure. 

• Control Plane Stability

• Consider number of network devices, total number of links etc.

• Minimize amount of control plane state.

• Minimize churn at startup and upon link failure.

• Traffic Engineering

• Heavy use of ECMP makes TE in DC not as important as in the WAN. 

• However we still want to “drain” devices and respond to imbalances

6



Why BGP and not IGP?

• Simpler protocol design compared to IGPs
• Mostly in terms of state replication process
• Fewer state-machines, data-structures, etc
• Better vendor interoperability

• Troubleshooting BGP is simpler
• Paths propagated over link
• AS PATH is easy to understand.
• Easy to correlate sent & received state

• ECMP is natural with BGP
• Unique as compared to link-state protocols
• Very helpful to implement granular policies
• Use for unequal-cost Anycast load-balancing solution

7



Why BGP and not IGP? (cont.)

• Event propagation is more constrained in BGP
• More stability due to reduced event “flooding” domains
• E.g. can control BGP UPDATE using BGP ASNs to stop info from 

looping back
• Generally is a result of distance-vector protocol nature

• Configuration complexity for BGP?
• Not a problem with automated configuration generation. Especially 

in static environments such as data-center

• What about convergence properties?
• Simple BGP policy and route selection helps.
• Best path is simply shortest path (respecting AP_PATH).
• Worst case convergence is a few seconds, most cases less than a 

second

8



Validating Protocol Assumptions 

Lessons from Route Surge PoC Tests:
We simulated PoC tests using OSPF and BGP, details at end of Deck.
• Note: some issues were vendor specific  Link-state protocols could 

be implemented properly!, but requires tuning.

• Idea is that LSDB has many “inefficient” non-best paths.

• On startup or link failure, these “inefficient” non-best paths become 
best paths and are installed in the FIB.

• This results in a surge in FIB utilization---Game Over.

• With BGP, ASPATH keeps only “useful” paths---no surge.
9



Routing Design
• Single logical link between devices, eBGP all the way down to the ToR.

• Separate BGP ASN per ToR, ToR ASN’s reused between containers.

• Parallel spines (Green vs Red) for horizontal scaling.

~100 Spines

~200 Leafs

~2K ToR

~100K

10



BGP Routing Design Specifics

• BGP AS_PATH Multipath Relax
• For ECMP even if AS_PATH doesn’t match.

• Sufficient to have the same AS_PATH length

• We use 2-octet private BGP ASN’s
• Simplifies path hiding at WAN edge (remove private AS)

• Simplifies route-filtering at WAN edge (single regex).

• But we only have 1022 Private ASN’s…

• 4-octet ASNs would work, but not widely supported

11



BGP Specifics: Allow AS In
• This is a numbering problem: the 

amount of BGP 16-bit private ASN’s is 
limited

• Solution: reuse Private ASNs on the 
ToRs.

• “Allow AS in” on ToR eBGP sessions.

• ToR numbering is local per 
container/cluster.

• Requires vendor support, but feature is 
easy to implement

12



Default Routing and Summarization
• Default route for external destinations only.

• Don’t hide server subnets.

• O.W. Route Black-Holing on link failure!

• If D advertises a prefix P, then some of the traffic 
from C to P will follow default to A. If the link AD 
fails, this traffic is black-holed.

• If A and B send P to C, then A withdraws P when 
link AD fails, so C receives P only from B, so all 
traffic will take the link CB.

• Similarly for summarization of server subnets.

13



Operational Issues with BGP

•Lack of Consistent feature support:
•Not all vendors support everything you need.
•BGP Add-Path
•32-bit ASNs
•AS_PATH multipath relax

•Interoperability issues:
•Especially when coupled with CoPP and CPU 

queuing (Smaller L2 domains helps---less dhcp)
•Small mismatches may result in large outages!

14



Operational Issues with BGP

•Unexpected ‘default behavior’
• E.g. selecting best-path using ‘oldest path’
• Combined with lack of as-path multipath relax 

on neighbors…
• Traffic polarization due to hash function 

reuse
• This is not a BGP problem but you see it all the 

time
•Overly aggressive timers – session flaps 

on heavy CPU load
•RIB/FIB inconsistencies
• This is not a BGP problem but it is 

consistently seen in all implementations
15





SDN Use Cases for Data-Center

• Injecting ECMP Anycast prefixes
• Already implemented (see references).
• Used for software load-balancing in the network.
• Uses a “minimal” BGP speaker to inject routes.

• Moving Traffic On/Off of Links/Devices
• Graceful reload and automated maintenance.
• Isolating network equipment experiencing grey failures.

• Changing ECMP traffic proportions
• Unequal-cost load distribution in the network 
• E.g. to compensate for various link failures and re-balance traffic 

(network is symmetric but traffic may not be).

17



BGP SDN Controller 
• Focus is the DC – controllers scale 

within DC, partition by cluster, region 
and then global sync

• Controller Design Considerations
• Logical vs Literal  
• Scale - Clustering
• High Availability
• Latency between controller and network 

element

• Components of a Controller
• Topology discovery
• Path Computation
• Monitoring and Network State Discovery
• REST API 

Controller is a component of a Typical 
Software Orchestration Stack

Topology Module

Network Element

Controller

Vendor
Agent

OPEN 
FLOW

BDM
SDK

Physical

Control Path

Logical

BGP
RIB MGR

PCE

Monitoring Module

Monitor

WD Flow

State

REST API

Analysis/
Correlation

Collector

Device 
Manager

BiG
DATA



BGP SDN Controller Foundations
• Why BGP vs OpenFlow

• No new protocol.

• No new silicon.

• No new OS or SDK bits.

• Still need a controller.

• Have “literal” SDN, software generates graphs that define physical, logical, and control planes.

• Graphs define the ideal ground state, used for config generation.

• Need the current state in real time. 

• Need to compute new desired state.

• Need to inject desired forwarding state.

• Programming forwarding via the RIB

• Topology discovery via BGP listener (link state discovery).  

• RIB manipulation via BGP speaker (injection of more preferred prefixes).  19



Network Setup

• Templates to peer with the central controller 
(passive listening)

• Policy to prefer routes injected from controller

• Policy to announce only certain routes to the 
controller

• Multi-hop peering with all devices.

• Key requirement: path resiliency

• CLOS has very rich path set, network 
partition is very unlikely.

Only Partial Peering Set 
Displyaed

AS 

65501

AS 

64901
AS 

64902

A
S

6
4

X
X

X

A
S

6
4

X
X

X

A
S

6
4

X
X

X

A
S

6
4

X
X

X

Controller

20



SDN Controller Design

Managed
Devices

BGP Speaker [stateful]
API to announce/withdraw a route.
Keep state of announced prefixes

eBGP
Sessions

BGP Listener [stateless]
Tell controller of prefixes received.

Tell controller of BGP up/down.

Speaker
Thread

Decision
Thread

Listener
Thread

State
Sync Thread

Shared
State

Database

Command
Center

Network Graph
(bootstrap information)

Inject Route Command:
Prefix + Next-Hop + Router-ID

Receive Route Message:
Prefix + Router-ID

Wakeup
&

Read

Write
&

Notify

REST API

• Implemented a C# version
• P.O.C used ExaBGP

21



Building Network Link State

• Use a special form of “control plane ping”
• Rely on the fact that BGP session reflects 

“link health”
• Assumes single BGP session b/w two devices

• Create a /32 prefix for every device, e.g. R1.
• Inject prefix into device R1.
• Expect to hear this prefix via all devices 

R2…Rn directly connected to R1.
• If heard, declare link R1 --- R2 as up.

Community tagging + policy ensures prefix only leaks “one 
hop” from point of injection, but is reflected to the 
controller.

R1 R2

Controller

Prefix for R1 

relayed

Inject

Prefix for R1

with one-hop 

community

Expect

Prefix for R1

from R2

R3

Prefix for R1 

NOT relayed

22



Overriding Routing Decisions

The controller knows of all server subnets and devices. 
The controller runs SPF and
• Computes next hops for every server subnet at every device
• Checks if this is different from “static network graph” decisions
• Only pushes the “deltas”
• These prefixes are pushed with “third party” next-hops (next slide) 

and a better metric.

• Controller has full view of the topology
• Zero delta if no difference from “default” routing behavior
• Controller may declare a link down to re-route traffic…

23



Overriding Routing Decisions cont.

• Injected routes have third-party next-hop
• Those need to be resolved via BGP
• Next-hops have to be injected as well!
• A next-hop /32 is created for every device
• Same “one hop” BGP community used

• By default only one path allowed per 
BGP session

• Need either Add-Path or multiple 
peering sessions

• Worst case: # sessions = ECMP fan-out
• Add-Path Receive-Only would help!

R1

R2

Controller

Inject

Prefix X/24
with Next-Hops: 

N1, N2

Inject 
Next-Hop

prefix N1/32

R3

Inject 
Next-Hop 

prefix N2 /32

Next-hop prefix: 

N1 /32

Next-hop prefix:

N2 /32

24



Overriding Routing Decisions cont.
• Simple REST to manipulate network state “overrides”

• Supported calls:
• Logically shutdown/un-shutdown a link

• Logically shutdown/un-shutdown a device

• Announce a prefix with next-hop set via a device

• Read current state of the down links/devices

PUT http://<controller>/state/link/up=R1,R2&down=R3,R4

• State is persistent across controller reboots

• State is shared across multiple controllers

25



Ordered FIB Programming

If updating BGP RIB’s on devices in 
random order…
…RIB/FIB tables could go out of sync
Micro-loops problem!

R1

S1 S2

R2 R3

Prefix X

This link 
overloaded

(1) Update these 
devices first

(2) Update these 
devices second

26





Traffic Engineering

Failures may cause traffic imbalances
This includes: 

• Physical failures

• Logical link/device overloading

R2 R3

R1

R4

Link b/w R2 and R4 goes down but R1 does not 

know that

50%

50%

100%
This link 

congested

50%

R2 R3

R1

R4

Controller installs path with different ECMP 

weights

25%
75%

50%
Congestion
alleviated

75%
25%

28



Traffic Engineering (cont.)

Requires knowing 
• traffic matrix (TM)
• Network topology and capacities
Solves Linear Programming problem
Computes ECMP weights
• For every prefix
• At every hop
Optimal for a given TM

• Link state change causes reprogramming
• More state pushed down to the network 

A

B

33% 66%

29



Ask to the vendors!

• Most common HW platforms can do it (e.g. Broadcom)
• Signaling via BGP does not look complicated either
• Note: Has implications on hardware resource usage

• Goes well with weighted ECMP
• Well defined in RFC 2992

• Not a standard (sigh)
• We really like receive-only functionality

30





What we learned

• Does not require new firmware, silicon,  or API’s.

• Some BGP extensions are nice to have.

• BGP Code is tends to be mature  .

• Easy to roll-back to default BGP routing.

• Solves our current problems and allows solving more.

32



Questions?
Contacts:

Edet Nkposong - edetn@microsoft.com
Tim LaBerge - Tim.LaBerge@microsoft.com
Naoki Kitajima - naokikit@microsoft.com



References

http://datatracker.ietf.org/doc/draft-lapukhov-bgp-routing-large-dc/

http://code.google.com/p/exabgp/

http://datatracker.ietf.org/doc/draft-ietf-idr-link-bandwidth/

http://datatracker.ietf.org/doc/draft-lapukhov-bgp-sdn/

http://www.nanog.org/meetings/nanog55/presentations/Monday/Lapukhov.pdf

http://www.nanog.org/sites/default/files/wed.general.brainslug.lapukhov.20.pdf

http://research.microsoft.com/pubs/64604/osr2007.pdf

http://research.microsoft.com/en-us/people/chakim/slb-
sigcomm2013.pdf

34

http://datatracker.ietf.org/doc/draft-lapukhov-bgp-routing-large-dc/
http://datatracker.ietf.org/doc/draft-ietf-idr-link-bandwidth/
http://datatracker.ietf.org/doc/draft-lapukhov-bgp-sdn/
http://www.nanog.org/meetings/nanog55/presentations/Monday/Lapukhov.pdf
http://www.nanog.org/sites/default/files/wed.general.brainslug.lapukhov.20.pdf
http://research.microsoft.com/pubs/64604/osr2007.pdf
http://research.microsoft.com/en-us/people/chakim/slb-sigcomm2013.pdf


Backup Slides

35





OSPF - Route Surge Test

• Test bed that emulates 72 PODSETs
• Each PODSET comprises 2 switches
• Objective – study system and route table behavior when 

control plane is operating in a state that mimics production

Test Bed 
• 4 Spine switches
• 144 VRFs created on a router –

each VRF = 1x podset switch
• Each VRF has 8 logical interfaces 

(2 to each spine)
• This emulates the 8-way required 

by the podset switch
• 3 physical podset switches
• Each podset carries 6 server-side 

IP Subnets

R1 R2 R3 R4 R5 R6 R7 R8

PODSET 1

PODSET 
SW 1

PODSET 
SW 2

PODSET 2

PODSET 
SW 1

PODSET 
SW 2

PODSET 72

PODSET 
SW 1

PODSET 
SW 2- - - - -

SPINE 

37



Test Bed
• Route table calculations
• Expected OSPF state
• 144 x 2 x 4 = 1152 links for infrastructure
• 144 x 6 = 864 server routes (although these will be 4-way since we have brought 

everything into 4 spines (instead of 8)
• Some loopback addresses and routes from the real podset switches
• We expect ~ (144 x 2 x 4) + (144 x 6) – 144 = 1872 routes

• Initial testing proved that the platform can sustain this scale (control and forwarding 
plane) 

• What happens when we shake things up ?

38



OSPF Surge Test
• Effect of bringing up 72 podset (144 OSPF neighbors) all at once

0

2000

4000

6000

8000

10000

12000

14000
2:

30
:3

2

2:
30

:4
0

2:
30

:4
5

2:
30

:5
2

2:
30

:5
9

2:
31

:0
6

2:
31

:1
3

2:
31

:2
2

2:
31

:3
3

2:
31

:4
5

2:
31

:5
7

2:
32

:1
0

2:
32

:2
2

2:
32

:3
4

2:
32

:4
5

2:
32

:5
6

2:
33

:0
6

2:
33

:1
8

2:
33

:2
9

2:
33

:4
3

2:
33

:5
4

2:
34

:1
2

2:
34

:2
4

2:
34

:3
1

Route Table Growth – 7508a

39



OSPF Surge Test
• Why the surge ?
• As adjacencies come up, the spine learns 

about routes through other podset switches
• Given that we have 144 podset switches, we 

expect to see 144-way routes although only 
16-way routes are accepted

0
2000
4000
6000
8000

10000
12000
14000

2:
30

:3
2

2:
30

:4
5

2:
30

:5
9

2:
31

:1
3

2:
31

:3
3

2:
31

:5
7

2:
3
2:

22
2:

32
:4

5
2:

33
:0

6
2:

33
:2

9
2:

33
:5

4
2:

34
:2

4

Route Table Growth – 7508a

• Sample route
O    192.0.5.188/30 [110/21] via 192.0.1.33

via 192.0.2.57

via 192.0.0.1

via 192.0.11.249

via 192.0.0.185

via 192.0.0.201

via 192.0.2.25

via 192.0.1.49

via 192.0.0.241

via 192.0.11.225

via 192.0.1.165

via 192.0.0.5

via 192.0.12.53

via 192.0.1.221

via 192.0.1.149

via 192.0.0.149

• Route table reveals that we can have 16-way 
routes for any destination including infrastructure 
routes

• This is highly undesirable but completely expected 
and normal

40



OSPF Surge Test
• Instead of installing a 2-way towards the podset

switch, the spine ends-up installing a 16-way for 
podset switches that are disconnected

• If a podset switch-spine link is disabled, the spine will 
learn about this particular podset switches IP subnets 
via other podset switches
• Unnecessary 16-way routes

• For every disabled podset switch-spine link, the spine 
will install a 16-way route through other podset
switches

• The surge was enough to fill the  FIB (same timeline 
as graph on slide 12)

sat-a75ag-poc-1a(s1)#show log| inc OVERFLOW

2011-02-16T02:33:32.160872+00:00 sat-a75ag-poc-1a SandCell: %SAND-3-

ROUTING_OVERFLOW: Software is unable to fit all the routes in hardware 

due to lack of fec entries. All routed traffic is being dropped.

R1 R2 R3 R4 R5 R6 R7 R8

PODSET 
SW 1

PODSET 
SW 2

6 server
vlans

6 server
vlans

41



BGP Surge Test
• BGP design

• Spine AS 65535
• PODSET AS starting at 65001, 

65002 etc

R1 R2 R3 R4 R5 R6 R7 R8

PODSET 1

AS 65001

PODSET 
SW 1

PODSET 
SW 2

PODSET 2

AS 65002

PODSET 
SW 1

PODSET 
SW 2

PODSET 72

AS 65072

PODSET 
SW 1

PODSET 
SW 2- - - - -

SPINE AS 65535

42



BGP Surge Test

• Effect of bringing up 72 PODSETs (144 BGP neighbors) all 
at once

0

200

400

600

800

1000

1200

1400

1600

1800

Route Table Growth – 7508a

43



OSPF vs BGP Surge Test – Summary

• With the proposed design, OSPF exposed a potential surge 
issue (commodity switches have smaller TCAM limits) – could 
be solved by specific vendor tweaks – non standard.

• Network needs to be able to handle the surge and any 
additional 16-way routes due to disconnected spine-podset
switch links
• Protocol enhancements required
• Prevent infrastructure routes from appearing as 16-way.

• BGP advantages
• Very deterministic behavior
• Protocol design takes care of eliminating the surge effect (i.e. spine 

won’t learn routes with its own AS)
• ECMP supported and routes are labeled by the podset they came from 

(AS #) – beautiful !

44


