
Global Networking Services Team, Global Foundation Services, Microsoft Corporation

Experiences with BGP in Large Scale Data Centers:

Teaching an old protocol new tricks

Agenda
• Network design requirements

• Protocol selection: BGP vs IGP

• Routing design detailed

• Motivation for BGP SDN

• Design of BGP SDN Controller

• Fault tolerance in BGP SDN

• The roadmap for BGP SDN

Design Requirements
Scale of the data-center network:

• 100K+ bare metal servers

• Over 3K network switches per DC

Applications:

• Map/Reduce: Social Media, Web Index and Targeted Advertising

• Public Cloud Computing: Elastic Compute and Storage

• Real-Time Analytics: Low latency computing leveraging distributed
memory across discrete nodes.

Key outcome:

East West traffic profile drives need for large bisectional
bandwidth.

Design Requirements
Cost Down

• Big Data: Storage of large data sets w/geographic replicas.

• Vendor Diversity: build ecosystem and drive competition

• Network CAPEX/OPEX is shifting:
• From ASIC to Fiber and Optics.

• From “big iron” to many dense commodity switches.

• Power/cooling still important, especially closer to the core.

Site Up
• From “network availability” to “system availability”

• Design and Test for Failure (hardware does and will fail)
• Systems have high component count (Processors, Disks, Optics, Cables)

• Induce failure (up to failing an entire DC) to understand behavior of the system
under varying conditions.

Translating Requirement to Design

Network Topology Criteria
Support East <-> West Traffic Profile

• Applications distributed over many
servers

• Mice and elephant traffic flows

Provide Large Bisectional Bandwidth

• No over-subscription in Network
Fabric

• Minimize Capex and Opex
• Cheap commodity switches
• Low power consumption

Use Homogenous Components

Network Protocol Criteria
• Standards Based

• Control Plane Scaling and
convergence

• Minimize resource consumption e.g.
CPU, TCAM usage - predictable and
low

• Layer3 with equal-cost multipathing
(ECMP)

• Programmable
• Extensible and easy to automate

Network Design: Topology

• Example: 3-Stage Folded CLOS.

• Full bisection bandwidth (m ≥ n) .

• Horizontal Scaling (scale-out vs. scale-up)

• Natural ECMP link load-balancing.

• Viable with dense commodity hardware.
• Build large “virtual” boxes out of small

components

Network Design: Protocol

Network Protocol Requirements
• Resilience and fault containment

• CLOS has high link count, link failure is common, so limit fault propagation on link
failure. [MSFT design does not hide link failures!]

• Minimize effect of packet loss on application performance

• Control Plane Stability

• Consider number of network devices, total number of links etc.

• Minimize amount of control plane state.

• Minimize churn at startup and upon link failure.

• Traffic Engineering

• Heavy use of ECMP makes TE in DC not as important as in the WAN.

• However we still want to “drain” devices and respond to imbalances

Network Design: Protocol

Operational Requirements
• Avoid Complexity: Configuration/troubleshooting.
• Predictability: Link failure should gracefully degrade capacity.
• Scalability: Can’t afford non-linearity in CPU/memory.
• Interoperability: It’s difficult to use vendor specific

functionality.

Why BGP and not IGP?

• Simpler protocol design compared to IGPs
• Mostly in terms of state replication process
• Better vendor interoperability
• Fewer state-machines, data-structures, etc

• Troubleshooting BGP is simpler
• Paths propagated over link
• ASPATH is easy to understand.
• Easy to correlate sent & received state

• BGP allows for per-hop traffic engineering
• Unique as compared to link-state protocols
• Very helpful to implement granular policies
• Use for unequal-cost Anycast load-balancing solution

Why BGP and not IGP? (cont.)

• Event propagation is more constrained in BGP
• More stability due to reduced event “flooding” domains
• E.g. can control BGP UPDATE using BGP ASNs to stop info from

looping back
• Generally is a result of distance-vector protocol nature

• Configuration complexity for BGP?
• Not a problem with automated configuration generation

• Especially in static environments such as data-center

• What about convergence properties?
• Simple BGP policy helps.
• Practical convergence in less than a second

Lessons from Route Surge PoC Tests

We simulated PoC tests using OSPF and BGP, details at end of
Deck.
• Note: some issues were vendor specific Link-state protocols

could be implemented properly!, but requires tuning.

• Idea is that LSDB has many “useless” non-best paths.

• On link failure, these “useless” paths are installed in fib.

• This results in a surge in FIB utilization---Game Over.

• With BGP, ASPATH keeps only “useful” paths---no surge.

Routing Design

• 3 Stage Folded CLOS Topology with parallel Spine Blocks
• PoC Tests prove BGP meets our design requirements
• Border Switch

• Connects to the WAN
• 4 or more switches in a unique ASN (64xxx)

• Spine
• 4 Parallel Spine Blocks (multiple switches per block)
• All Spine Blocks use a unique ASN (64xxx)
• All Spines connect to all Border Switches

• Container
• Comprised of multiple ToRs attached to 4 Leaf Switches
• Each ToR (64xxx) has a unique ASN
• ToR ASNs re-used across containers
• All Leaf Switch use a unique ASN (64xxx)
• Each Leaf Switch is attached to a unique spine block

Routing Design (contd)

• Single logical link between devices (portchannel).

• eBGP all the way down to the ToR.

• Separate BGP ASN per ToR.

BGP Routing Design Specifics

• BGP AS_PATH Multipath Relax
• For ECMP even if AS_PATH doesn’t match.

• Sufficient to have the same AS_PATH length

• We use 2-octet private BGP ASN’s
• Simplifies path hiding at WAN edge (remove private AS)

• Simplifies route-filtering at WAN edge (single regex).

• But we only have 1022 Private ASN’s…

• 4-octet ASNs would work, but not widely supported

BGP Specifics: Allow AS In
• This is a numbering problem: the

amount of BGP 16-bit private ASN’s is
limited

• Solution: reuse Private ASNs on the
ToRs.

• “Allow AS in” on ToR eBGP sessions.

• ToR numbering is local per
container/cluster.

• Requires vendor support, but feature is
easy to implement

BGP Specifics: Default Routing
• Default route for external destinations only.

• Don’t hide more specific prefixes.

• O.W. Route Black-Holing on link failure!

• If D advertises a prefix P, then some of the traffic
from C to P will follow default to A. If the link AD
fails, this traffic is black-holed.

• If A and B send P to C, then A withdraws P when link
AD fails, so C receives P only from B, so all traffic
will take the link CB.

• NOTE: could be solved with BGP SDN

BGP Specifics: Route Summarization
• Don’t summarize server subnets!

• O.W., Route Black-Holing on link failure!

• Suppose C and D advertise prefixes that A and B
summarize via a less specific prefix P.

• Some traffic sent to C will transit B. If link BC
fails, this traffic is black-holed.

• Without summarization, B withdraws C’s prefix
on failure of link BC, so all traffic for C transits A.

(Summarizing P2P links is OK.)

NOTE: black-holing problem be solved with BGP
SDN!

Operational Issues with BGP

•Consistent feature support
•Not all vendors support

everything you need, e.g.:
• BGP Add-Path
• 32-bit ASNs
• AS_PATH multipath relax
• BGP update groups

•Interoperability issues:
• Especially when coupled with

CoPP and CPU queueing
• Small mismatches may result in

large outages!

Operational Issues with BGP

• Unexpected ‘default behavior’
• E.g. selecting best-path using ‘oldest

path’
• Combined with lack of as-path

multipath relax on neighbors…
• Traffic polarization due to hash

function reuse
• This is not a BGP problem but you see

it all the time
• Overly aggressive timers – session

flaps on heavy CPU load
• RIB/FIB inconsistencies

• This is not a BGP problem but it is
consistently seen in all
implementations

Software Driven Networks - Data Center
• Programmability
• Automation - deployment/configuration/monitoring concerned with scale,

quality, consistency
• Configuring large quantities of commodity hardware

• Programming - extract value, new creative uses of the network,
experimentation

• NFV promoting a shift away from dedicated appliances. e.g. virtual
overlays/load balancing built in software

• Control routing behavior via Cloud Orchestration platform - tighter
coupling with application components.

• Path Isolation (route control)
• Load Balancing
• Data Center and WAN Network Integration

SDN Use Cases for Data-Center

• Injecting ECMP Anycast prefixes
• Used for load-balancing in the network

• …Or to provide resiliency across the WAN

• Moving Traffic On/Off of Links/Devices
• Strive for zero packet loss

• Multiple uses for this simple operation
• Graceful reload and automated maintenance

• Isolating network issues in “black box” scenarios

• Changing ECMP traffic proportions
• Unequal-cost load distribution in the network

• E.g. to compensate for various link failures and re-balance traffic

BGP SDN Controller
• Focus is the DC – controllers scale

within DC, partition by cluster, region
and then global sync

• Controller Design Considerations
• Logical vs Literal
• Scale - Clustering
• High Availability
• Latency between controller and network

element

• Components of a Controller
• Topology discovery
• Path Computation
• Monitoring and Network State Discovery
• REST API

Controller is a component of a Typical
Software Orchestration Stack

Topology Module

Network Element

Controller

Vendor
Agent

OPEN
FLOW

BDM
SDK

Physical

Control Path

Logical

BGP
RIB MGR

PCE

Monitoring Module

Monitor

WD Flow

State

REST API

Analysis/
Correlation

Collector

Device
Manager

BiG
DATA

BGP SDN Controller (contd.)
• We do literal SDN – towards dynamically managing network state in software.

• Need a starting point ---> Graphs ground state
• Need current running state ---> Link up/down? Hosts present?
• Need to compute new desired state. <---- Only thing that's new.
• Need to inject desired forwarding state.

• Programming the Network via Indirect influence of the RIB
• Topology discovery via BGP for Links State Computation
• Indirect influence via established BGP sessions to inject alternate policies, network paths

etc.
• Alternative methodology proposed in I2RS which will allows direct programming of RIB via RIB

Manager. Still in draft.

• How does this compare to OF?
• OpenFlow would allow programming of the FIB but requires adopting new Protocol.
• Silicon that implements OF 1.1? 1.2? 1.3?
• OS code/SDK to program silicon.
• API's to expose the SDK to the control plane.
• Controller.

Network Setup

• New configuration added
• Template to peer with the central

controller (passive listening)

• Policy to prefer routes injected from
controller

• Policy to announce only certain routes to
the controller

• Peering with all devices: multi-hop

• Key requirement: path resiliency

• Clos has very rich path set

• Network partition is very unlikely Only Partial Peering Set

Displyaed

AS

65501

AS

64901
AS

64902

A
S

 6
4

X
X

X

A
S

 6
4

X
X

X

A
S

 6
4

X
X

X

A
S

 6
4

X
X

X

Controller

SDN Controller Design

BGP Speaker

BGP Listener

Decision

Thread

Shared

State

Database

Managed

Devices

Command

Center

Network

Graph

(bootstrap

information)

eBGP

Sessions

Inject Route Command:

Prefix + Next-Hop + Router-ID

Receive Route Message:

Prefix + Router-ID

REST

API

State

Sync Thread
Wakeup

&

Read

Speaker

Thread

Listener

Thread

Write

&

Notify

BGP Speaker/Listener

• Does not need to perform best-path selection

• Does not need to relay BGP updates

• BGP Listener [stateless]
• Tell controller of prefixes received

• Tell controller of BGP sessions coming up/down

• Preferably using structured envelope (JSON/XML)

• BGP Speaker [stateful]
• API to announce/withdraw a route

• Keep state of announced prefixes

• Implemented a C# version

• P.O.C used ExaBGP

Building Network Link State

• Use a special form of “control plane ping”

• Rely on the fact that BGP session reflects
“link health”

• Assumes single BGP session b/w two devices

• Create a /32 prefix for every device

• Inject prefix for device X into device X

• Expect to hear this prefix via all devices
Y1…Yn, directly connected to X

• If heard, declare link between X and Y as up
Community tagging + policy ensures prefix only leaks “one
hop” from point of injection

R1 R2

Controller

Prefix for R1

relayed

Inject

Prefix for R1

with one-hop

community

Expect

Prefix for R1

from R2

R3

Prefix for R1

NOT relayed

Overriding Routing Decisions

The controller knows of all “edge” subnets and devices
Runs SPF and computes next-hops…
• For every prefix at every device
• Check if this is different from “static network graph” decisions
• Only push the “deltas”
• Prefixes are pushed with “third party” next-hops (next slide)

• Controller has full view of the topology
• Zero delta if no differentсe from “default” routing behavior
• Controller may declare a link down to re-route traffic…

Even if the link is physically up

Overriding Routing Decisions cont.

• Injected routes have third-party next-hop
• Those need to be resolved via BGP
• Next-hops have to be injected as well!
• A next-hop /32 is created for every device
• Same “one hop” BGP community used

• Only one path allowed path per BGP
session

• Need either Add-Path or multiple
peering sessions

• Worst case: # sessions = ECMP fan-out
• Add-Path Receive-Only would help!

R1

R2

Controller

Inject

Prefix X/24

with Next-Hops:

N1, N2

Inject

Next-Hop

prefix N1/32

R3

Inject

Next-Hop

prefix N2 /32

Next-hop prefix:

N1 /32

Next-hop prefix:

N2 /32

Overriding Routing Decisions cont.

• Simple REST to manipulate network state “overrides”

• List of the supported calls:
• Logically shutdown/un-shutdown a link

• Logically shutdown/un-shutdown a device

• Announce a prefix with next-hop set via a device

• Read current state of the down links/devices

PUT http://<controller>/state/link/up=R1,R2&down=R3,R4

• State is persistent across controller reboots

• State is shared across multiple controllers

Ordered FIB Programming

If updating BGP RIB’s on devices in
random order…
…RIB/FIB tables could go out of sync
Micro-loops problem!

R1

S1 S2

R2 R3

Prefix X

This link

overloaded

(1) Update these

devices first

(2) Update these

devices second

Traffic Engineering

Failures may cause traffic imbalances
This includes:

• Physical failures

• Logical link/device overloading

R2 R3

R1

R4

Link b/w R2 and R4 goes down but R1 does not

know that

50%

50%

100%
This link

congested

50%

R2 R3

R1

R4

Controller installs path with different ECMP

weights

25%
75%

50%
Congestion

alleviated

75%
25%

Traffic Engineering (cont.)

Requires knowing
• traffic matrix (TM)
• Network topology and capacities
Solves Linear Programming problem
Computes ECMP weights
• For every prefix
• At every hop
Optimal for a given TM

• Link state change causes reprogramming
• More state pushed down to the network

A

B

33% 66%

Ask to the vendors!

• Most common HW platforms can do it (e.g. Broadcom)
• Signaling via BGP does not look complicated either
• Note: Has implications on hardware resource usage

• Goes well with weighted ECMP
• Well defined in RFC 2992

• Not a standard (sigh)
• We really like receive-only functionality

What we learned

• Does not require new firmware or API’s

• Though some BGP extensions are nice to have

• BGP Code is pretty mature (for most vendors)

• Easy to roll-back to regular routing

• Solves our current problems and in future allows solving
much more

• Solves our current problems and in future allows solving
much more

Questions?
Contacts:

Edet Nkposong - edetn@microsoft.com
Tim LaBerge - Tim.LaBerge@microsoft.com
Naoki Kitajima - naokikit@microsoft.com

References

http://datatracker.ietf.org/doc/draft-lapukhov-bgp-routing-large-dc/

http://code.google.com/p/exabgp/

http://datatracker.ietf.org/doc/draft-ietf-idr-link-bandwidth/

http://datatracker.ietf.org/doc/draft-lapukhov-bgp-routing-large-dc/
http://datatracker.ietf.org/doc/draft-ietf-idr-link-bandwidth/

Goals and Non-Goals of project

- Deploy on existing
networks, without major
software upgrades

- Low risk deployment,
should have easy rollback
story

- Leverage existing
protocols/functionality

- Override some routing
behavior, but keep non-SDN
paths where possible

OSPF - Route Surge Test

• Test bed that emulates 72 PODSETs
• Each PODSET comprises 2 switches
• Objective – study system and route table behavior when

control plane is operating in a state that mimics production

Test Bed
• 4 Spine switches
• 144 VRFs created on a router –

each VRF = 1x podset switch
• Each VRF has 8 logical interfaces

(2 to each spine)
• This emulates the 8-way required

by the podset switch
• 3 physical podset switches
• Each podset carries 6 server-side

IP Subnets

R1 R2 R3 R4 R5 R6 R7 R8

PODSET 1

PODSET
SW 1

PODSET
SW 2

PODSET 2

PODSET
SW 1

PODSET
SW 2

PODSET 72

PODSET
SW 1

PODSET
SW 2- - - - -

SPINE

Test Bed
• Route table calculations
• Expected OSPF state
• 144 x 2 x 4 = 1152 links for infrastructure
• 144 x 6 = 864 server routes (although these will be 4-way since we have brought

everything into 4 spines (instead of 8)
• Some loopback addresses and routes from the real podset switches
• We expect ~ (144 x 2 x 4) + (144 x 6) – 144 = 1872 routes

• Initial testing proved that the platform can sustain this scale (control and forwarding
plane) – document name

• What happens when we shake things up ?

OSPF Surge Test
• Effect of bringing up 72 podset (144 OSPF neighbors) all at once

0

2000

4000

6000

8000

10000

12000

14000
2:

30
:3

2

2:
30

:4
0

2:
30

:4
5

2:
30

:5
2

2:
30

:5
9

2:
31

:0
6

2:
31

:1
3

2:
31

:2
2

2:
31

:3
3

2:
31

:4
5

2:
31

:5
7

2:
32

:1
0

2:
32

:2
2

2:
32

:3
4

2:
32

:4
5

2:
32

:5
6

2:
33

:0
6

2:
33

:1
8

2:
33

:2
9

2:
33

:4
3

2:
33

:5
4

2:
34

:1
2

2:
34

:2
4

2:
34

:3
1

Route Table Growth – 7508a

OSPF Surge Test
• Why the surge ?
• As adjacencies come up, the spine learns

about routes through other podset switches
• Given that we have 144 podset switches, we

expect to see 144-way routes although only
16-way routes are accepted

0
2000
4000
6000
8000

10000
12000
14000

2:
30

:3
2

2:
30

:4
5

2:
30

:5
9

2:
31

:1
3

2:
31

:3
3

2:
31

:5
7

2:
3
2:

22
2:

32
:4

5
2:

33
:0

6
2:

33
:2

9
2:

33
:5

4
2:

34
:2

4

Route Table Growth – 7508a

• Sample route
O 192.0.5.188/30 [110/21] via 192.0.1.33

via 192.0.2.57

via 192.0.0.1

via 192.0.11.249

via 192.0.0.185

via 192.0.0.201

via 192.0.2.25

via 192.0.1.49

via 192.0.0.241

via 192.0.11.225

via 192.0.1.165

via 192.0.0.5

via 192.0.12.53

via 192.0.1.221

via 192.0.1.149

via 192.0.0.149

• Route table reveals that we can have 16-way
routes for any destination including infrastructure
routes

• This is highly undesirable but completely expected
and normal

OSPF Surge Test
• Instead of installing a 2-way towards the podset

switch, the spine ends-up installing a 16-way for
podset switches that are disconnected

• If a podset switch-spine link is disabled, the spine will
learn about this particular podset switches IP subnets
via other shims
• Unnecessary 16-way routes

• For every disabled podset switch-spine link, the spine
will install a 16-way route through other podset
switches

• The surge was enough to fill the FIB (same timeline
as graph on slide 12)

sat-a75ag-poc-1a(s1)#show log| inc OVERFLOW

2011-02-16T02:33:32.160872+00:00 sat-a75ag-poc-1a SandCell: %SAND-3-

ROUTING_OVERFLOW: Software is unable to fit all the routes in hardware

due to lack of fec entries. All routed traffic is being dropped.

R1 R2 R3 R4 R5 R6 R7 R8

PODSET
SW 1

PODSET
SW 2

6 server
vlans

6 server
vlans

BGP Surge Test
• BGP design

• Spine AS 65535
• PODSET AS starting at 65001,

65002 etc

R1 R2 R3 R4 R5 R6 R7 R8

PODSET 1

AS 65001

PODSET
SW 1

PODSET
SW 2

PODSET 2

AS 65002

PODSET
SW 1

PODSET
SW 2

PODSET 72

AS 65072

PODSET
SW 1

PODSET
SW 2- - - - -

SPINE AS 65535

BGP Surge Test

• Effect of bringing up 72 PODSETs (144 BGP neighbors) all
at once

0

200

400

600

800

1000

1200

1400

1600

1800

Route Table Growth – 7508a

OSPF vs BGP Surge Test – Summary

• With the proposed design, OSPF exposed a potential surge
issue (commodity switches have smaller TCAM limits) – could
be solved by specific vendor tweaks – non standard.

• Network needs to be able to handle the surge and any
additional 16-way routes due to disconnected spine-podset
switch links
• Protocol enhancements required
• Prevent infrastructure routes from appearing as 16-way.

• BGP advantages
• Very deterministic behavior
• Protocol design takes care of eliminating the surge effect (i.e. spine

won’t learn routes with its own AS)
• ECMP supported and routes are labeled by the container they came

from (AS #) – beautiful !

