# Agenda

- About pmacct
- Spotify use-case
- Netflix use-case

## About pmacct

#### pmacct is open-source, free, GPL'ed software



#### Usage scenarios



Monitor customer quotas or fair-usage policy Peering

#### **IXPs**

Infer member relations
Provide members traffic
stats

Capacity planning
Triggering alarms
Historical traffic trends
Feeding into 3<sup>rd</sup> party
tools

#### **IP Carriers, CDNs**

Detect revenue leaks
Customer retention
Peering

#### **Mobile operators**

Verify roaming charges
Inspect subscribers behaviour

#### **SDN**

Query of traffic stats on custom spatial and temporal bounds

#### Key pmacct non-technical facts

- 10+ years old project
- Can't spell the name after the second drink
- Free, open-source, independent
- Under active development
- Innovation being introduced
- Well deployed around, also large SPs
- Aims to be the traffic accounting tool closer to the SP community needs

## Some technical facts (1/3)

- Pluggable architecture
  - Straightforward to add support for new collection methods or backends
- An abstraction layer allows out-of-the-box any collection method to interact with any backend
- Both multi-process and (coarse) multi-threading
  - Multiple plugins (of same or different type) can be instantiated at runtime, each with own config

## Some technical facts (2/3)



## Some technical facts (3/3)

- Pervasive data-reduction techniques, ie.:
  - Data aggregation
  - Tagging and filtering
  - Sampling
- Ability to build multiple views out of the very same collected network traffic dataset, ie.:
  - Unaggregated to flat-files for security and forensic purposes
  - Aggregated as [ <ingress router>, <ingress interface>,
     <BGP next-hop>, <peer destination ASN> ] to build an internal traffic matrix for capacity planning purposes

#### **BGP** integration

- pmacct introduced a Quagga-based BGP daemon
  - Implemented as a parallel thread within the collector
  - Doesn't send UPDATEs and WITHDRAWs whatsoever
  - Behaves as a passive BGP neighbor
  - Maintains per-peer BGP RIBs
  - Supports 32-bit ASNs; IPv4, IPv6 and VPN families
  - Supports ADD-PATH: draft-ietf-idr-add-paths
- Why BGP at the collector?
  - Telemetry reports on forwarding-plane, and a bit more
  - Extended visibility into control-plane information

# Brokering data around: RabbitMQ message exchanges

- pmacct opening to AMQP protocol
- noSQL landscape difficult to move through, ie.
   fragmented and lacks of standardization
- Data can be picked up at the message exchange in the preferred programming/scripting language
- Data can be then easily inserted in the preferred backend, ie. not natively supported by pmacct

## Spotify use-case



## About the presenters

#### David Barroso

- Network Engineer @Spotify
- 10+ years in the network industry
- Python enthusiast
- Automation junkie

#### Paolo Lucente

- Principal Software Developer @pmacct
- 10+ years measuring and correlating traffic flows
- Service Providers are his DNA

## About Spotify (1/2)

**Spotify** is a commercial music streaming service providing digital rights management-restricted content from record labels [...] Paid "Premium" subscriptions remove advertisements and allow users to download music to listen to offline.

## About Spotify (2/2)

- Over 60M active users per month, 15M paying subscribers, 30M+ songs, 28k songs added per day, available in 58 markets
- Four major datacenters:
  - Stockholm, London, Ashburn, San Jose
- Users are directed to the closest datacenter:
  - In case of fault or maintenance users can be redirected to another DC

#### FIB vs RIB (1/2)

- RIB (Routing Information Base)
  - A representation in memory of all available paths and their attributes
  - This information is fed by routing protocols
- FIB (Forwarding Information Base)
  - A copy of the RIB (usually in hardware) where some attributes are resolved (like next-hop or outgoing interface)

#### FIB vs RIB (2/2)

- RIB (Routing Information Base)
  - Virtually unlimited (limited only by the memory of the device)
- FIB (Forwarding Information Base)
  - Limited by the underlying hardware
  - Between 64k-128k LPM prefixes in modern switches with commodity ASIC
  - Between 500k-1000k LPM prefixes in expensive routers/switches with customized ASICs

#### The Internet

- +500k prefixes
- Too many to fit them in commodity ASICs, ie.:
  - Trident 2 supports 32k prefixes
  - ARAD supports 64k prefixes

## When you travel ... (1/2)

- Do you carry an atlas?
- Or do you carry a local map?

So .. (granted I'm close to content or eyeballs, ie. I'm not in the business of routing the internet for 3<sup>rd</sup> parties):

- Why do I need all the prefixes?
- What if I only install the prefixes I really need?

## When you travel ... (2/2)

- Example: Spotify datacenter in Stockholm
  - Total prefixes: ~519k
  - Prefixes from peers: ~150k
  - Average # of active prefixes per day: ~16k
- Example explained:
  - Spotify streams music to users
  - Users are typically served from the closest DC
  - Why would the Spotify DC in San Jose need to specifically know how to reach users in Serbia?

#### Goal of our work

- Make a selection of "needed" routes from the RIB so to be able to fit them on the FIB of a switch with commodity ASICs
- In simplest term this can be reduced to a TopN problem, where N is the amount of routes the commodity ASIC can fit

## Two key components of our work

- pmacct Collector that can aggregate traffic by network, AS, BGP peer, etc. BGP information can be obtained by peering with other routers (more later)
- Selective route download Feature that allows to pick a subset of the routes on the RIB and install them on the FIB.

#### Overview



- Transit will send the default route to the Internet Switch. The route is installed by default in the FIB
- We receive from the IXP all the peers' prefixes. Those are not installed, they are forwarded to pmacct and the BGP Controller
- pmacct will receive in addition sFlow data

#### pmacct



- pmacct aggregates sFlow data using the BGP information previously sent by the Internet Switch
- pmacct reports the TopN\* prefixes to the BGP Controller
- The BGP controller instructs the Internet switch to install those TopN\* prefixes

<sup>\*</sup> N is a number close to the maximum number of entries that the FIB of the Internet Switch can support

## Spotify AP



- •\$USER connects to the service
- The application informs the access point that \$USER has connected and requests that the \$PREFIX containing his/her \$IP is installed on the FIB
  - It might be installed already as another user within the same range might have connected previously or because pmacct reported that prefix as being one of the TopN prefixes
- The BGP controller instructs the Internet Switch to install the prefix if necessary

#### Internals



## Results: top 1k routes (1/4)



# Results: top 5k routes (2/4)



# Results: top 15k routes (3/4)



## Results: top 30k routes (4/4)



#### Considerations

- The BGP controller updates a prefix list containing the prefixes that the device must take from the RIB and install on the FIB (that is, selective route download applied):
  - If a prefix is removed from the RIB it will be removed from the FIB by the device
  - If the BGP controller fails the prefix list remains in the device. Allowing the device to operate normally as per the last instructions

#### Present and future (1/2)

- Demo run in Spotify Stockholm datacenter, connected to Netnod:
  - Info gathered but no actual changes performed on the Internet Router there
- Pilot to be run very soon by Spotify in cooperation with a major IXP in Europe

## Present and future (2/2)

- The BGP controller only computes top prefixes and passes all the information used and the results to plugins
- Plugins can in future do with this information whatever they want:
  - Build reports
  - Build a prefix list and send it to a router
  - Compare possible next-hops, AS PATH's with other active/passive measurements to choose peers based on reliability, latency, etc.

```
# cat etc/config.yaml
max age: 48
csv delimiter: ";"
max routes: 30000
min bytes: 0
packet sampling: 10000
... (output omitted)
plugins:
  - 'prefix data.SavePrefixData'
  - 'statistics.RouteStatistics'
  - 'statistics.OffloadedBytes'
  - 'bird.Bird'
... (output omitted)
```

#### Netflix use-case





## Netflix use-case agenda

- About Netflix
- Brief digression on BGP ADD-PATHS
- Putting all the pieces together

#### **About Netflix**





#### **Popular on Netflix**















#### **Emmy-winning TV Shows**

Based on your interest in...















#### **Netflix CDN: Open Connect**

In house CDN

 Designed for efficient video delivery

- Many POPs
- No backbone
- Hardware: ASR, MX and Arista 7500e
- Delivery via:
  - Servers embedded in access network
  - Peering
  - Transit



#### **Network Design at Netflix**



#### **Egress BGP Hacks**

- In many cases, too
  much traffic for 1,2 or
  even 4 egress partners
  to handle
- Use of multi-path via different ASN's



#### Flow Accounting at Netflix

- Primary goal: peering analysis
  - How much traffic is being exchanged with which ASN?
  - How do they perform?
- Software: pmacct
  - NetFlow/IPFIX augmented by BGP using pmacct
- Problem: multi-path, not only one single best path

# **Brief digression on BGP ADD-PATHS**

#### On BGP ADD-PATHS

- A BGP extension that allows the advertisement of multiple paths for the same address prefix without the new paths implicitly replacing any previous ones
- Draft at IETF: draft-ietf-idr-add-paths-09

#### On BGP ADD-PATHS

New BGP capability, new NLRI encoding:

Capability number: 69

#### On BGP ADD-PATHS

- BGP ADD-PATHS covers several use cases:
  - Mostly revolving around actual routing
  - Extra path flooding questioned in such context (\*)
- Our use-case for BGP ADD-PATHS is around monitoring applications:
  - Not much talk yet in such context
  - Proposal to mark best-paths to benefit monitoring applications: draft-bgp-path-marking (Cardona et al.)

# Putting all the pieces together: NetFlow and BGP ADD-PATHS with pmacct at Netflix

#### Wait, so what's the problem?

- BGP multi-path, traffic not only sent to a single best path
- pmacct is only aware of the best from its BGP feed

**BGP Multi-path** 

```
[BGP/170] 3w0d 01:19:58, MED 100, localpref 200
AS path: 789 I, validation-state: unverified
> to 10.0.0.1 via ae12.0
[BGP/170] 3w0d 01:15:44, MED 100, localpref 100
AS path: 123 456 789 I, validation-state: unverified
> to 10.0.0.2 via ae8.0
[BGP/170] 3w0d 01:13:48, MED 100, localpref 100
AS path: 321 654 789 I, validation-state: unverified
> to 10.0.0.3 via ae10.0
[BGP/170] 3w0d 01:18:24, MED 100, localpref 100
AS path: 213 546 789 I, validation-state: unverified
> to 10.0.0.4 via ae1.0
```

Traditional BGP to pmacct

#### **BGP ADD-PATHS FTW!**

 ADD-PATHS provides visibility into the N bestpaths

**BGP Multi-path** 

```
[BGP/170] 3w0d 01:19:58, MED 100, localpref 200

AS path: 789 I, validation-state: unverified

> to 10.0.0.1 via ae12.0

[BGP/170] 3w0d 01:15:44, MED 100, localpref 100

AS path: 123 456 789 I, validation-state: unverified

> to 10.0.0.2 via ae8.0

[BGP/170] 3w0d 01:13:48, MED 100, localpref 100

AS path: 321 654 789 I, validation-state: unverified

> to 10.0.0.3 via ae10.0

[BGP/170] 3w0d 01:18:24, MED 100, localpref 100

AS path: 213 546 789 I, validation-state: unverified

> to 10.0.0.4 via ae1.0
```

#### BGP ADD-PATH to pmacct

#### pmacct and BGP ADD-PATHS

- In early Jan 2014 pmacct BGP integration got support for BGP ADD-PATHS
  - GA as part of 1.5.0rc3 version (Apr 2014)
- Why BGP ADD-PATHS?
  - Selected over BMP since it allows to not enter the exercise of parsing BGP policies
  - True, post-policies BMP exists but it's much less implemented around and hence not felt the way to go

## **NetFlow/IPFIX and BGP ADD-PATHS**

- OK, so we have visibility in the N best-paths ..
- .. but how to map NetFlow traffic onto them?
  - We don't want to get in the exercise of hashing traffic onto paths ourselves as much as possible
  - NetFlow will tell! BGP next-hop in NetFlow is used as selector to tie the right BGP information to traffic data
  - Initially concerned if the BGP NextHop in NetFlow would be of any use to determine the actual path
    - We verified it accurate and consistent across vendors

## **NetFlow/IPFIX and BGP ADD-PATHS**

#### **NetFlow**

```
SrcAddr:
                 10.0.1.71
DstAddr:
                 192.168.1.148
NextHop:
                 10.0.0.3
InputInt:
                 662
OutputInt:
                 953
Packets:
Octets:
                 2908
Duration:
                 5.112000000 sec
SrcPort:
DstPort:
                 33738
TCP Flags:
                 0x10
Protocol:
IP ToS:
                 0x00
SrcAS:
                 2906
                 789
DstAS:
                 26 (prefix: 10.0.1.64/26)
SrcMask:
                 24 (prefix: 192.168.1.0/24)
DstMask:
```

#### BGP ADD-PATH to pmacct

# Netflix + NetFlow/IPFIX + pmacct + ADD-PATHS

- Multiple pmacct servers in various locations
- NetFlow is being exported to the pmacct servers:
  - Mix of NetFlow v5, v9 and IPFIX
- BGP ADD-PATHS is being set up between routers and the pmacct servers
  - Sessions configured as iBGP, RR-client
  - Juniper ADD-7 (maximum)
  - Cisco ADD-ALL

# Wrap-up

# Acknowledgments

- Elisa Jasinska
  - elisa@bigwaveit.org
- David Barroso
  - dbarroso@spotify.com

# Further information (1/2)

- http://www.pmacct.net/
   dbarroso plucente waltzing v0.5.pdf
  - Full information on the Spotify use-case
- http://www.pmacct.net/nanog61-pmacct-add-path.pdf
  - Full information on the Netflix use-case
- http://www.pmacct.net/
   Lucente collecting netflow with pmacct v1.2.pdf
  - A tutorial on pmacct

# Further information (2/2)

- http://www.pmacct.net/lucente\_pmacct\_uknof14.pdf
  - About coupling telemetry and BGP
- http://ripe61.ripe.net/presentations/156-ripe61-bcpplanning-and-te.pdf
  - About telemetry, traffic matrices, capacity planning & TE
- http://wiki.pmacct.net/OfficialExamples
  - Compiling instructions for pmacct and quick-start guides
- http://wiki.pmacct.net/ImplementationNotes
  - pmacct implementation notes (RDBMS, maintenance, etc.)

### Use of Flow-Routing Combination

JANOG36 BoF

maoke@bbix.net
paolo@pmacct.net