オープンソースのネットフロー ツールの運用

JANOG36 BoF

maoke@bbix.net
paolo@pmacct.net

JANOG36 meeting, Kitakyushu – Jul 2015

Introduction

pmacct is open-source, free, GPL'ed software

Usage scenarios

Key pmacct non-technical facts

- 10+ years old project
- Can't spell the name after the second drink
- Free, open-source, independent
- Under active development
- Innovation being introduced
- Well deployed around, also large SPs
- Aims to be the traffic accounting tool closer to the SP community needs

Some technical facts (1/3)

- Pluggable architecture
 - Straightforward to add support for new collection methods or backends
- An abstraction layer allows out-of-the-box any collection method to interact with any backend
- Both multi-process and (coarse) multi-threading
 - Multiple plugins (of same or different type) can be instantiated at runtime, each with own config

Some technical facts (2/3)

Some technical facts (3/3)

- Pervasive data-reduction techniques, ie.:
 - Data aggregation
 - Tagging and filtering
 - Sampling
- Ability to build multiple views out of the very same collected network traffic dataset, ie.:
 - Unaggregated to flat-files for security and forensic purposes
 - Aggregated as [<ingress router>, <ingress interface>,
 <BGP next-hop>, <peer destination ASN>] to build an internal traffic matrix for capacity planning purposes

Netflix use-case (peering analysis, traffic visibility)

Egress BGP hacks

- In many cases too much traffic to handle for 1, 2 or even 4 egress partners
- Use of BGP multi-path via different ASN's

On BGP add-path

- A BGP extension that allows the advertisement of multiple paths for the same address prefix without the new paths implicitly replacing any previous ones
- Draft at IETF: draft-ietf-idr-add-paths-09

The problem

- BGP multi-path, traffic not only sent to a single best path
- pmacct was only aware of the best from its BGP feed

BGP Multi-path

```
[BGP/170] 3w0d 01:19:58, MED 100, localpref 200
    AS path: 789 I, validation-state: unverified
    to 10.0.0.1 via ae12.0
    [BGP/170] 3w0d 01:15:44, MED 100, localpref 100
    AS path: 123 456 789 I, validation-state: unverified
    to 10.0.0.2 via ae8.0
    [BGP/170] 3w0d 01:13:48, MED 100, localpref 100
    AS path: 321 654 789 I, validation-state: unverified
    to 10.0.0.3 via ae10.0
    [BGP/170] 3w0d 01:18:24, MED 100, localpref 100
    AS path: 213 546 789 I, validation-state: unverified
    to 10.0.0.4 via ae1.0
```

Traditional BGP to pmacct

* 192.168.1.0/24 10.0.0.1 100 200 789 I

BGP add-path in action

BGP add-path gives visibility into the N BGP multi-path best-paths

BGP Multi-path

```
[BGP/170] 3w0d 01:19:58, MED 100, localpref 200
    AS path: 789 I, validation-state: unverified
    to 10.0.0.1 via ae12.0
    [BGP/170] 3w0d 01:15:44, MED 100, localpref 100
    AS path: 123 456 789 I, validation-state: unverified
    to 10.0.0.2 via ae8.0
    [BGP/170] 3w0d 01:13:48, MED 100, localpref 100
    AS path: 321 654 789 I, validation-state: unverified
    to 10.0.0.3 via ae10.0
    [BGP/170] 3w0d 01:18:24, MED 100, localpref 100
    AS path: 213 546 789 I, validation-state: unverified
    to 10.0.0.4 via ae1.0
```

BGP ADD-PATH to pmacct

NetFlow/IPFIX and BGP add-path (1/2)

- OK, so we have visibility in the N best-paths ...
- .. but how to map NetFlow traffic onto them?
 - We don't want to get in the exercise of hashing traffic onto paths ourselves as much as possible
 - NetFlow will tell! BGP next-hop in NetFlow is used as selector to tie the right BGP information to traffic data
 - Initially concerned if the BGP NextHop in NetFlow would be of any use to determine the actual path
 - We verified it accurate and consistent across vendors

NetFlow/IPFIX and BGP add-path (2/2)

NetFlow

```
SrcAddr:
                 10.0.1.71
                 192.168.1.148
DstAddr:
NextHop:
                 10.0.0.3
InputInt:
                 662
OutputInt:
                 953
Packets:
Octets:
                 2908
                 5.112000000 sec
Duration:
SrcPort:
                 80
DstPort:
                 33738
TCP Flags:
                 0x10
Protocol:
IP ToS:
                 0x00
SrcAS:
                 2906
DstAS:
                 789
SrcMask:
                 26 (prefix: 10.0.1.64/26)
DstMask:
                 24 (prefix: 192.168.1.0/24)
```

BGP ADD-PATH to pmacct

Deployment notes

- Multiple pmacct servers in various locations
- BGP ADD-PATHS is being set up between routers and the pmacct servers
 - Sessions configured as iBGP, RR-client
 - Juniper ADD-7 (maximum)
 - Cisco ADD-ALL
- NetFlow is being exported to the pmacct servers:
 - Mix of NetFlow v5, v9 and IPFIX

Spotify use-case (SDN)

When you travel ...

- Example: Spotify datacenter in Stockholm
 - Total prefixes: ~519k
 - Prefixes from peers: ~150k
 - Average # of active prefixes per day: ~16k
- Example explained:
 - Spotify streams music to users
 - Users are typically served from the closest DC
 - Why would the Spotify DC in San Jose need to specifically know how to reach users in \$EU_COUNTRY

Goal of our work

- Make a selection of "needed" routes from the RIB so to be able to fit them on the FIB of a switch with commodity ASICs
- In simplest term this can be reduced to a TopN problem, where N is the amount of routes the commodity ASIC can fit

Overview

- ■Transit will send the default route to the Internet Switch. The route is installed by default in the FIB
- •We receive from the IXP all the peers' prefixes. Those are not installed, they are forwarded to pmacct
- pmacct will receive in addition sFlow data

pmacct

- pmacct aggregates sFlow data using the BGP information previously sent by the Internet Switch
- •pmacct reports the flow data to the BGP Controller
- ■The BGP controller instructs the Internet switch to install those TopN* prefixes

^{*} N is a number close to the maximum number of entries that the FIB of the Internet Switch can support

Internals

Results: top 1k routes (1/4)

Results: top 5k routes (2/4)

Results: top 15k routes (3/4)

Results: top 30k routes (4/4)

Deployment notes

- Demo run in Spotify Stockholm datacenter, connected to Netnod:
 - Info gathered but no actual changes performed on the Internet Router there
- Pilot to be run very soon by Spotify in cooperation with a major IXP in Europe

Wrap-up

Acknowledgments

- Elisa Jasinska
 - elisa@bigwaveit.org
- David Barroso
 - dbarroso@spotify.com

Further information (1/2)

- http://www.pmacct.net/
 dbarroso plucente waltzing v0.5.pdf
 - Full information on the Spotify use-case
- http://www.pmacct.net/nanog61-pmacct-add-path.pdf
 - Full information on the Netflix use-case
- http://www.pmacct.net/
 Lucente collecting netflow with pmacct v1.2.pdf
 - A tutorial on pmacct

Further information (2/2)

- http://www.pmacct.net/lucente_pmacct_uknof14.pdf
 - About coupling telemetry and BGP
- http://ripe61.ripe.net/presentations/156-ripe61-bcpplanning-and-te.pdf
 - About telemetry, traffic matrices, capacity planning & TE
- http://wiki.pmacct.net/OfficialExamples
 - Compiling instructions for pmacct and quick-start guides
- http://wiki.pmacct.net/ImplementationNotes
 - pmacct implementation notes (RDBMS, maintenance, etc.)

オープンソースのネットフロー ツールの運用

JANOG36 BoF

maoke@bbix.net
paolo@pmacct.net

JANOG36 meeting, Kitakyushu – Jul 2015