IS-IS and OSPF: Network Design Comparisons and Considerations

Jeff Doyle

Objectives

Understand protocol similarities and differences

Understand protocol strengths and weaknesses

Make more informed design decisions

Agenda

Overview of link-state protocols
A parallel history of IS-IS and OSPF
Comparative analysis of IS-IS and OSPF
Design considerations
Less-tangible considerations
Conclusions

Agenda

Overview of link-state protocols
A parallel history of IS-IS and OSPF
Comparative analysis of IS-IS and OSPF
Design considerations
Less-tangible considerations
Conclusions

In the Beginning Was Distance Vector...

Also known as Bellman-Ford, Ford-Fulkerson
Very simple algorithm
Distance Vector Protocols include

RIP
BGP (but usually called Path Vector)
Cisco's IGRP
Cisco's EIGRP

Routing by Rumor

Distributed calculation

Each router knows only what its neighbor tells it

er

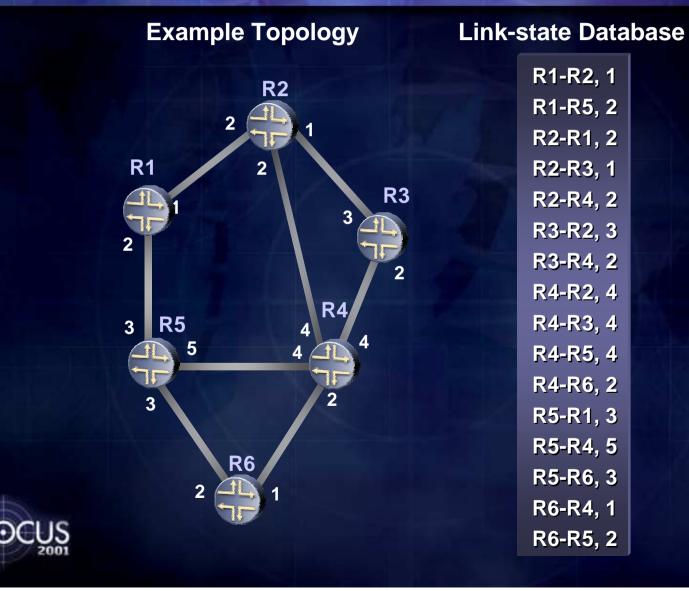
Problems with Distance Vector

Slow convergence

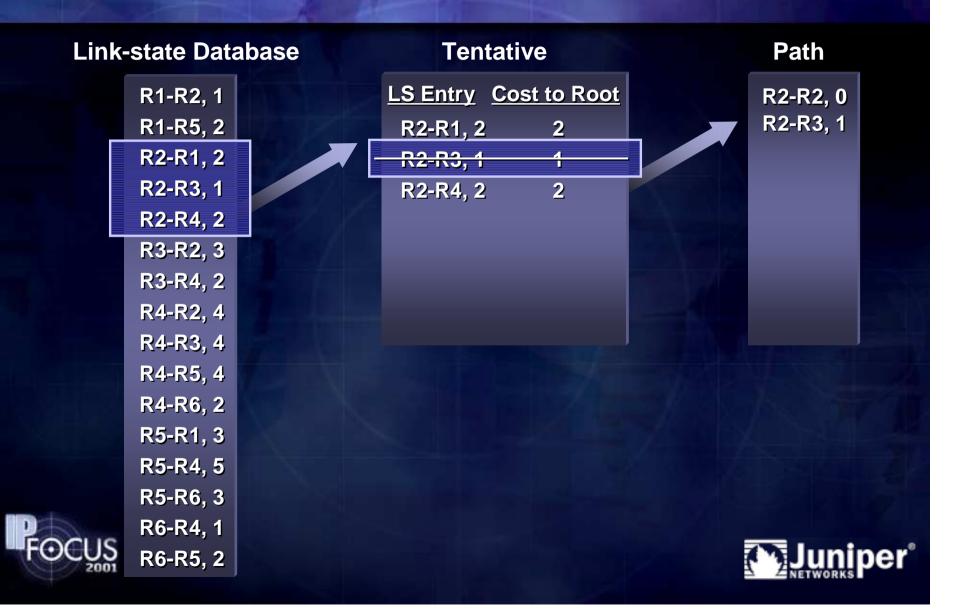
- A direct result of the distributed calculation
- Triggered updates help
- Kludges such as hold-down timers reduce transient errors, but increase convergence time
- Single-hop routing loops
 - Solution: split horizon
- Counting to infinity
 - Solution: make infinity finite
- Synchronized periodic updates
 - Solution: update jitter timers

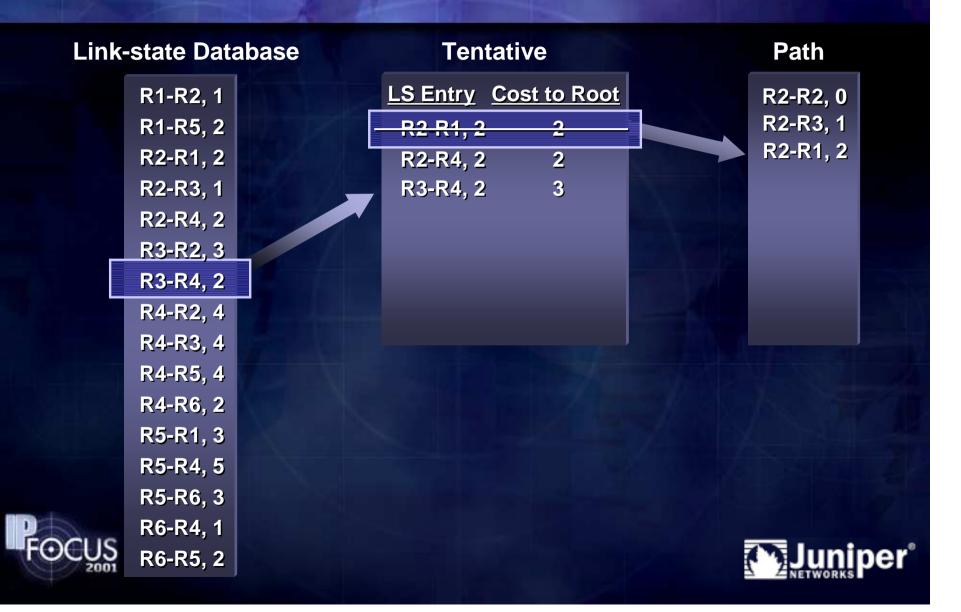
Link-state Protocols

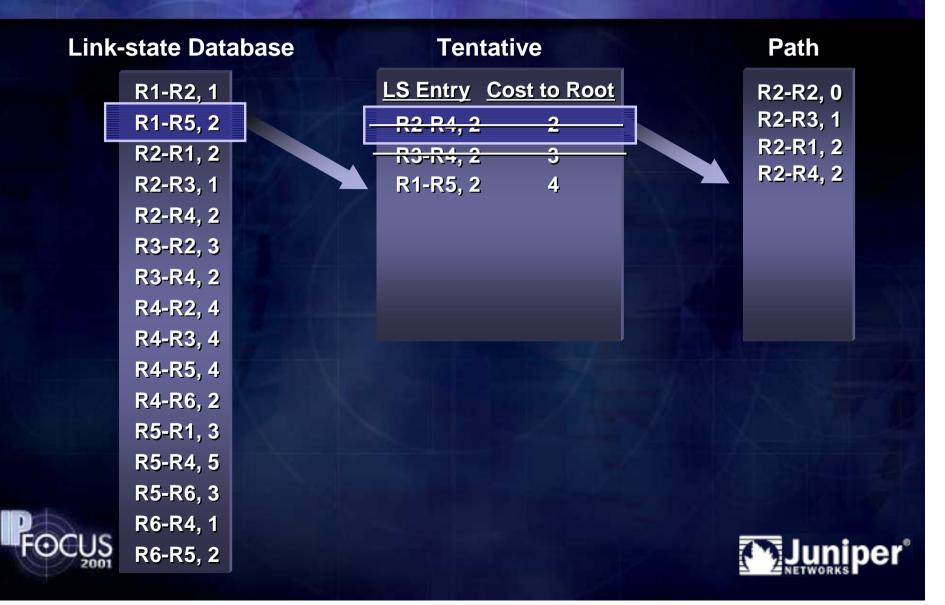
Also known as shortest path, Dijkstra Algorithm based on graph theory, providing better loop avoidance Local computation means faster convergence Link-state protocols include OSPF IBM APPN IS-IS MPLS CSPF ATM PNNI

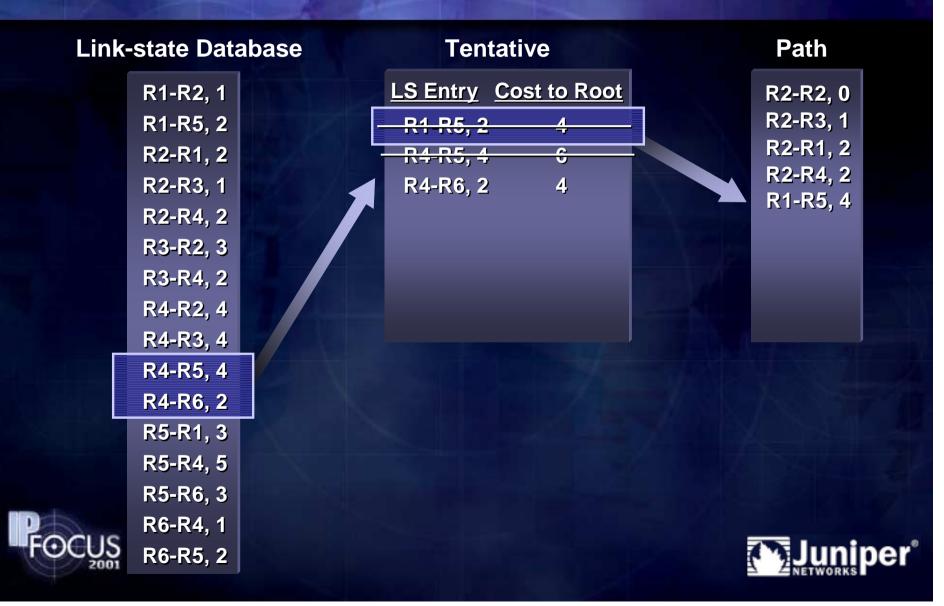


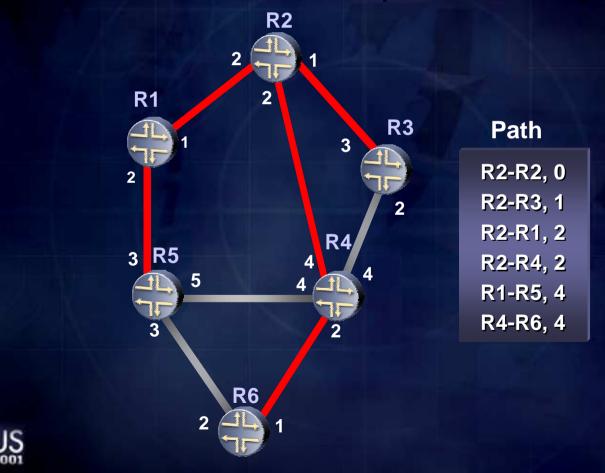
Fundamental Link-state Concepts


Adjacency
 Information flooding
 Link-state database
 SPF calculation









Link-state Database Tentative Path R1-R2, 1 LS Entry Cost to Root R2-R2, 0 R2-R3, 1 R1-R5, 2 R4 R6. 2 R2-R1, 2 R2-R1, 2 R2-R4, 2 R2-R3, 1 R1-R5, 4 R2-R4, 2 R4-R6, 4 R3-R2, 3 R3-R4, 2 R4-R2, 4 R4-R3, 4 R4-R5, 4 Tentative is empty R4-R6, 2 All nodes in link-state database R5-R1, 3 are in path R5-R4, 5 R5-R6, 3 SPF calculation is finished R6-R4, 1 R6-R5, 2

Loop-free, lowest-cost path to every node

Problems with Link State

Information flooding load Solution: sequence numbers and aging Solution: areas Stale LS database entries Solution: periodic database refresh .5(n²-n) adjacencies on multi-access networks Solution: designated routers Memory and CPU overload Solution: areas

Overview of link-state protocols
A parallel history of IS-IS and OSPF
Comparative analysis of IS-IS and OSPF
Design considerations
Less-tangible considerations
Conclusions

In the Beginning Was DECnet...

Radia Perlman

- Adopted by ISO for OSI model
- IS-IS extended to support IP
 - Interim solution until OSI makes it extinct (don't hold your breath)
 - RFC 1195
 - Also known as integrated IS-IS, dual IS-IS

Parallel initiative by IETF to develop an IP routing protocol

OSPF based on initial work on and experience with IS-IS

Disclaimer—biased, foggy memory)

1987

 IS-IS (from DEC) selected by ANSI as OSI intradomain protocol (CLNP only)

1988

- NSFnet deployed, IGP based on early IS-IS draft
- OSPF work begins, loosely based on IS-IS mechanisms (LS protocols are hard!)
- IP extensions to IS-IS defined

1989

- OSPF v.1 RFC published
- Proteon ships OSPF
- IS-IS becomes ISO proposed standard
- Public bickering ensues; OSPF and IS-IS are blessed as equals by IETF, with OSPF somewhat more equal
- Private cooperation improves both protocols

1990

Dual-mode IS-IS RFC published

1991

- OSPF v.2 RFC published
- Cisco ships OSPF
- Cisco ships OSI-only IS-IS
- **1**992
 - Cisco ships dual IS-IS (part of DEC Brouter)
 - Lots of OSPF deployed, but very little IS-IS

1993

Novell publishes NLSP (IPX IS-IS knockoff)

1994

- Cisco ships NLSP (rewriting IS-IS as side effect)
- Large service providers need an IGP; IS-IS is recommended due to recent rewrite and OSPF field experience (and to lesser extent, NSF CLNP mandate)

1995

Service providers begin deployment of IS-IS

- Cisco implementation firms up
- Protocol starts to become popular in niche

1996-1998

- IS-IS niche popularity continues to grow (some service providers switch to it from OSPF)
- IS-IS becomes barrier to entry for router vendors targeting large service providers
- Juniper Networks and other vendors ship IS-IS capable routers

1999-2000

 Extensions continue for both protocols (for example, traffic engineering)

Agenda

Overview of link-state protocols
A parallel history of IS-IS and OSPF
Comparative analysis of IS-IS and OSPF
Design considerations
Less-tangible considerations
Conclusions

ISOspeak 101

Intermediate System (IS) End System (ES) Protocol Data Unit (PDU) Subnetwork Point of Attachment (SNPA) Link State PDU (LSP) Routing Domain Level 2 Area Level 1 Area

Message Types: OSPF

Hello packet
Database description packet
Link-state request packet
Link-state acknowledgement packet
Link-state update packet

Message Types: IS-IS

Hello PDU

Link-state PDU

Sequence number PDUs
 Complete Sequence Number PDU (CSNP)
 Partial Sequence Number PDU (PSNP)

Message types are further divided into Level 1 and Level 2

OSPF LSAs

Multiple LSA types

Туре	LSA
1	Router LSA
2	Network LSA
3	Network Summary LSA
4	ASBR Summary LSA
5	AS External LSA
6	Group Membership LSA
7	Not-so-stubby Area LSA
8	External Attributes LSA
9-11	Opaque LSAs

IS-IS Level 1 LSPs

Single LSP, multiple TLVs

Туре	TLV
1	Area Addresses
2	IS Neighbors
3	ES Neighbors
10	Authentication Information
128	IP Internal Reachability Information
129	Protocols Supported
132	IP Interface Address

IS-IS Level 2 LSPs

Single LSP, multiple TLVs

Туре	TLV
1	Area Addresses
2	IS Neighbors
4	Partition Designated Level 2 IS
5	Prefix Neighbors
10	Authentication Information
128	IP Internal Reachability Information
129	Protocols Supported
130	IP External Reachability Information
131	Inter-domain Routing Protocol Information
132	IP Interface Address
135	Extended IP Reachability (wide metrics)

Message Encoding: OSPF

Runs over IP (protocol number 89)
32-bit alignment
Only LSAs are extensible
All OSPF speakers must recognize the extensions

Message Encoding: IS-IS

Runs directly over data link
No alignment
All PDUs are extendable
Nested TLVs

Media Support

OSPF

- Broadcast (LANs)
- Point-to-point
- Point-to-multipoint
- NBMA
- IS-IS
 - Broadcast
 - Point-to-point
 - No NBMA support

Router and Area IDs: OSPF

Router ID and area ID specified separately

- Each is 32-bit number
- AID associated with interface
 - - Explicitly specified RID
 - Loopback address
 - Highest interface IP address

Router and Area IDs: IS-IS

Examples: 01.0000.23a5.7c32.00 49. 0001.0000.23a5.7c32.00 47.0005.80.0000a7.0000.ffdd.0001.0000.23a5.7c32.00

- Area ID and sysID (router ID) specified in Network Entity Title (NET)
- NSAP address format
- In JUNOS[™] Internet software, specified on loopback interface

Neighbor Discovery and Maintenance: OSPF

Hello packets

- Establish two-way communication
- Advertise optional capabilities
- DR/BDR election/discovery
- Serve as keepalives
- 10s default hello interval, dead interval 4X

Most hello fields must match for adjacency

- Area ID, authentication, network mask, hello interval, router dead interval, options
- Changing values causes adjacency disruption

Neighbor Discovery and Maintenance: IS-IS

Hello packets

- Establish two-way communication
- L1, L2, L1/L2 neighbor discovery
- DR election/discovery
- Serve as keepalives
- 3s JUNOS default hello interval, dead interval 3X
- Hellos padded to full MTU size (dubious)
- Fewer matches necessary for adjacency
 - Hello and dead intervals can vary
 - Not even IP subnets must match!

Database Synchronization: OSPF

Database synchronization driven by state machine

Master/slave election

Database synchronization

- Database description packets
- Link-state request packets
- Link-state update packets
- Link-state acknowledgement packets

Database Synchronization: IS-IS

Simple synchronization based on flooding of sequence number PDUs

CSNPs

- Describe all LSPs in the database
- Analogous to OSPF DD messages
- Sent by DR every 10 seconds on broadcast networks
- Sent every hour on point-to-point networks

PSNPs

- Request missing or newer LSPs
- Analogous to OSPF LS Request messages

Database Refresh: OSPF

LSA refresh every 30 minutes
MaxAge = 1 hour
Up-counting timer
Design flaw: cannot change MaxAge

Database Refresh: IS-IS

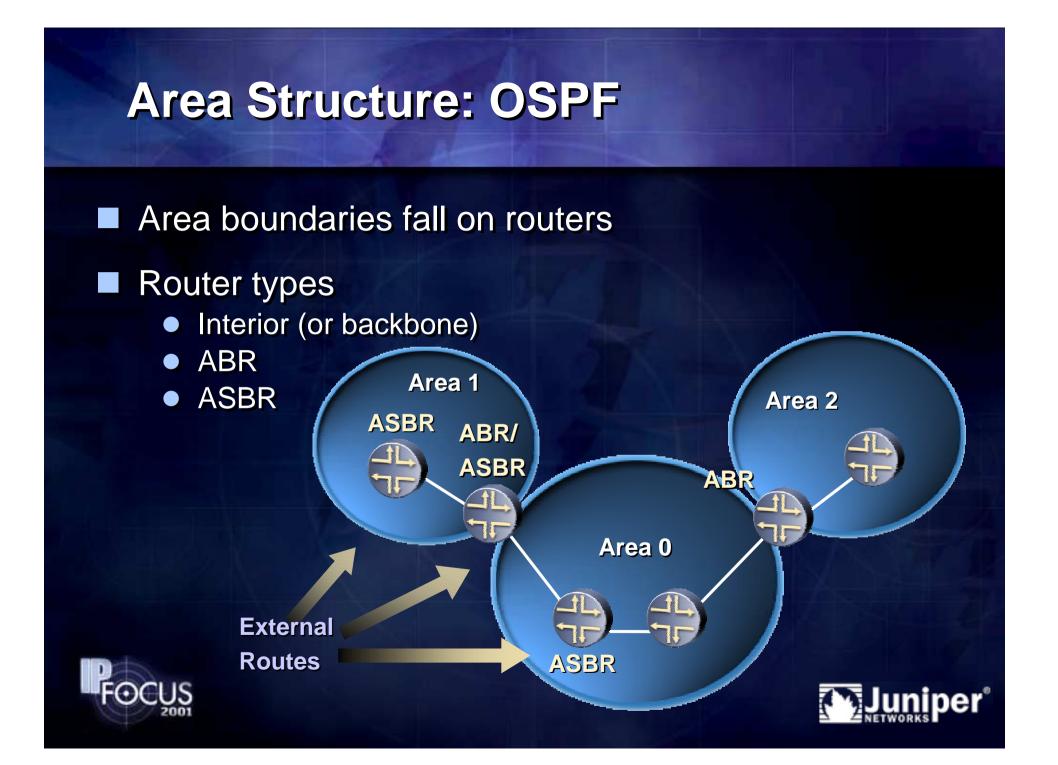
LSP refresh every 15 minutes

Minus random jitter timer of up to 25 percent

LSP Lifetime = 20 minutes (default)
Down-counting timer
LSP lifetime configurable up to 18.2 hours
Major reason IS-IS scales better to large areas

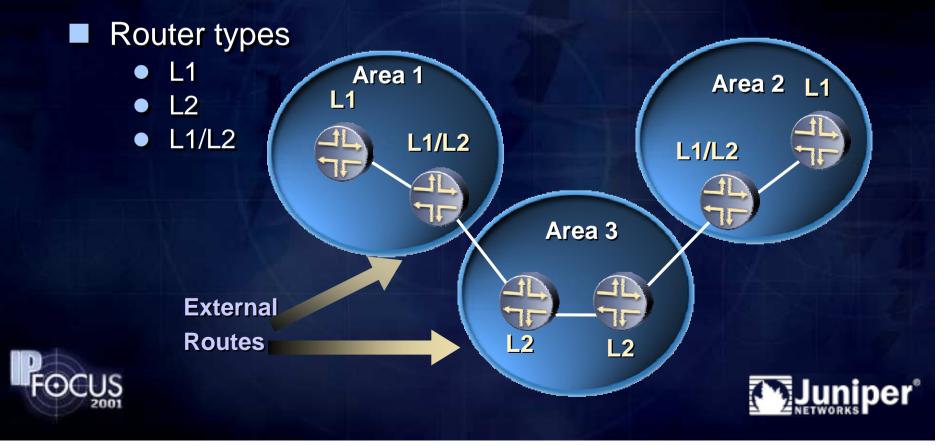
Designated Routers: OSPF

Highest priority becomes DR • 0-255, default 128 Highest router ID tie-breaker **Backup designated router** Speeds recovery from failed DR DR cannot be pre-empted The DR is usually the first active router Adjacencies formed only with DR and BDR


Designated Routers (DIS): IS-IS

Highest priority becomes DR
0-127, default 64
Highest MAC address tiebreaker

- No backup designated router
- DR can be pre-empted
 - Adding a router to a LAN can cause temporary instability
- Adjacencies formed with all routers on LAN, not just DR
 - Separate L1 and L2 adjacencies on same LAN



Area Structure: IS-IS

Area boundaries fall between routers

External reachability information in L2 LSPs only

IS-IS Optimizations for IP Support

Three-way handshaking
Dynamic hostname exchange (RFC 2966)
>256 pseudonode support
Domain-wide prefix distribution (RFC 2966)
Wide metrics

Agenda

Overview of link-state protocols
A parallel history of IS-IS and OSPF
Comparative analysis of IS-IS and OSPF
Design considerations
Less-tangible considerations
Conclusions

Metrics: OSPF

Dimensionless metric

- Large metric field
 - Type 1 LSA = 16 bits
 - Type 3, 4, 5, and 7 LSA = 24 bits

Cost

- Cost = Reference BW / Interface BW
- Default Reference BW = 100 Mbps
- If (Ref BW / Interface BW) > 1, Cost = 1
- Cost can also be set arbitrarily

External Metrics

- Type 1 (E1) = Assigned cost + cost to ASBR
- Type 2 (E2) = Assigned cost only

Metrics: IS-IS

- **Dimensionless metric**
- ISO 10589 defines 4 metric fields
 - Only default used in practice
- Small 6-bit metric field
 - Default = 10 for all interfaces
 - Maximum interface value = 64
 - Maximum route metric = 1,023

 - Possible limited metric granularity in large networks
 Originally intended to simplify SPF calculation (irrelevant with modern CPUs)
- Wide Metrics
 - Extends metric field to 32 bits
- Metrics tagged as internal or external (I/E bit)

LSA Scalability: OSPF

Famous "rules of thumb" carry little real meaning

- 64 KB maximum LSA size
- Only router (type 1) LSAs likely to grow large
 - 24 bytes of fixed fields
 - 12 bytes to represent each link
 - 5,331 links, maximum (but isn't this enough?)

■ Types 3, 4, 5, 7 LSAs

- One destination prefix per LSA
- Be careful what you redistribute!

LSP Scalability: IS-IS

Single LSP per router, per level

Fragmentation supported, but...

- Maximum fragment size = 1,470 bytes
- Maximum number of fragments = 256
- Isn't this enough?

Be careful what you redistribute!

Stub Areas

Trade routing precision for improved scalability

OSPF

- Stub areas eliminate type 5 LSA load
- Totally stubby areas extend the concept
- All area routers must understand stubbiness

IS-IS

L1 routers are "totally stubby" by default

Attached (ATT) set by L1/L2 router

IS-IS Inter-Area Route Leaking

Why leak routes?

- Improved routing precision
- More accurate BGP next-hop resolution
- Using IS-IS metric as BGP MED

L1-->L2 route leaking happens by default

- Internal routes only
- External routes require policy

L2-->L1 route leaking requires policy

- Internal or external
- Up/down bit prevents looping

Not-So-Stubby Areas

OSPF feature

- "Trick" to allow advertisement of external routes through stub areas (type 5 LSAs illegal)
- All routers in area must understand type 7 LSAs
- Similar function with IS-IS
 Using simple L1-->L2 policy

NBMA Networks

OSPF

- Point-to-point
- Point-to-multipoint mode
- NBMA mode (but why?)
- P-T-MP and NBMA require manual specification of neighbor addresses

IS-IS

- No multipoint support
- Must configure interfaces as logical P-T-Ps

Virtual Links

Useful for

- Patching partitioned backbone areas
- Area migrations
- Should be a temporary solution!
- Full OSPF support
- No IS-IS support
 - Specified in ISO 10589, but not implemented by major router vendors

Overload Bit

IS-IS feature

- Enables router to signal memory overload
- No transit traffic sent to overloaded router
- Set separately for Level 1 and Level 2
- Can be manually set, useful for graceful router turn-up

No comparable OSPF feature

Mesh Groups

IS-IS feature (RFC 2973)

- Can sharply curtail LSP flooding in full-mesh topologies
- Each router in mesh group receives only one copy of each LSP (one-hop flooding)
- Risk of lost LSPs—ensure design is robust enough!
- Interfaces can be manually configured to block LSPs (increased scalability, but increased risk)
- OSPF has no comparable feature

Security

Both protocols support authentication Plain-text passwords (sniffable!) MD5 cryptographic hash Authentication especially important with OSPF Runs over IP, so subject to spoofing and other attacks Non-IP nature makes IS-IS inherently more secure But authentication still a good idea

Traffic Engineering Support

Both protocols extended to disseminate traffic engineering parameters

OSPF

• Type 10 Opaque (area scope) LSAs

- IS-IS
 - Extended IS reachability (type 22) TLV
 - Traffic engineering parameters in sub-TLVs
 - Extended IP reachability (type 135) TLV
 - Wide metrics and up/down bit

Agenda

Overview of link-state protocols
A parallel history of IS-IS and OSPF
Comparative analysis of IS-IS and OSPF
Design considerations
Less-tangible considerations
Conclusions

Extensibility

OSPF

- New extensions require new LSAs (usually)
- All routers must understand new LSAs (usually)
- IPv6 support will require new OSPF version
- IS-IS
 - New extensions require new TLVs (usually)
 - Fewer compatibility issues than OSPF
 - Small community of interest (big ISPs) with big vendor clout means faster rollout of extensions
 - Extendable for IPv6

Optimality

Optimality

- OSPF was optimized for things that don't matter any more (link bandwidth, CPU alignment)
- IS-IS was optimized for things that don't matter any more (large LANs, SPF cost)
- Optimizations turn out to add complexity, but not much value
- A lot has changed in 10 years

Guru Availability

OSPF

- Broad experience base
- Many books, RFCs, training classes available

IS-IS

- Significantly smaller experience base
- Scarcity of documentation makes it mysterious
- Simpler than OSPF, easy to learn (with a few shifts in thinking)

Writing OSPF Code

OSPF spec is an excellent implementation guide

- If followed to the letter, a working, if naïve, implementation will likely result
- Spec is complex, but has almost no "why" information; hence, other (potentially more scalable) implementation approaches are at the implementer's own risk
- Barrier to entry in high-end router market (you need to know the protocol intuitively)

Writing IS-IS Code

IS-IS spec uses arcane ISOspeak and has very few implementation hints

- Spec is inherently simple (once you get the lingo), with fewer implementation issues
- Boilerplate at front and back of spec means you can lose pages without affecting content
- Barrier to entry in high-end router market (you need to know the protocol intuitively)

Agenda

Overview of link-state protocols
A parallel history of IS-IS and OSPF
Comparative analysis of IS-IS and OSPF
Design considerations
Less-tangible considerations
Conclusions

Conclusion

- Both protocols are mature and stable (with the right vendor)
- Both protocols continue to be extended
- Enterprise networks
 - IGP requirements can be complex
 - OSPF is a nobrainer
- Service provider networks
 - IGP requirements usually simpler
 - Scalability and stability are paramount
 - Consider your requirements carefully; pick the protocol that fits

Thank You http://www.juniper.net

