
1 | © 2013 Infoblox Inc. All Rights Reserved. 1 | © 2016 Infoblox Inc. All Rights Reserved.

Security Architecture of BIND 9
神明達哉

May 20, 2016

2 | © 2013 Infoblox Inc. All Rights Reserved. 2 | © 2016 Infoblox Inc. All Rights Reserved.

• ISC BIND
̶ Berkeley Internet Name Domain
̶ Most widely-used DNS server implementation to date
̶ Open source, BSD-compatible license
̶ Developed and maintained by Internet Systems Consortium (ISC)
- http://www.isc.org/

̶ BIND 9: Current major version, main topic of this talk
- Prior versions: BIND 4, BIND 8

• About me
̶ Previous: “researcher” at Toshiba
- MPLS(-like), IPv6, DNS (for IPv6), DHCPv6

̶ Ex-ISC employee
- BIND 9 statistics, port randomization, performance enhancements; BIND 10

̶ Current: engineer at Infoblox, Inc.
- (but this talk is not about my current job)

Background

3 | © 2013 Infoblox Inc. All Rights Reserved. 3 | © 2016 Infoblox Inc. All Rights Reserved.

• Lots of critical bugs in BIND 8
̶ 16 buffer overflow/overrun bugs in changelog of BIND 8.4.7
̶ Some could lead to arbitrary code execution

• BIND 9
̶ Complete redesign and rewrite, no reuse of BIND 8 code
̶ Improving security was one major goal

Some History of BIND Security

4 | © 2013 Infoblox Inc. All Rights Reserved. 4 | © 2016 Infoblox Inc. All Rights Reserved.

• Avoid handling raw wire/text data as much as possible
̶ Limit modules that touch raw data
̶ Other modules access it through higher-level abstractions

• Avoid using error-prone language primitives
̶ E.g. use buffer abstraction instead of direct manipulation of C-string/array

• Modularity
̶ Per-file data hiding with opaque data structures
̶ Minimize the risk of inter-module data corruption

• Design by contract (DBC)
̶ Separate invalid conditions (caller’s bug) from valid special cases
̶ Treat the former with an assertion failure and core dumping
̶ Help simplify implementation
̶ Help avoid invalid operations
̶ (Unfortunately) DoS attack vector

Security Considerations in BIND 9

5 | © 2013 Infoblox Inc. All Rights Reserved. 5 | © 2016 Infoblox Inc. All Rights Reserved.

• Scenario: copy a string from a remote source to an internal buffer
̶ (excluding a trailing nul for simplicity)

• Naively assume that the given string is short enough
̶ Recipe for arbitrary code execution

void copy_text(const char *src, char *dst)
{
while (*src != '\0')
*dst++ = *src++;

}

A Classic Example of Vulnerable Code

6 | © 2013 Infoblox Inc. All Rights Reserved. 6 | © 2016 Infoblox Inc. All Rights Reserved.

• Pass size for any variable-length data
• Validate input, treat violation as an error
• Nothing wrong, but:

̶ Tend to make code less understandable
- Mix of caller’s bug and actual run time error; lengthy error handling

̶ A violation can result in an undefined behavior
- Difficult to know how wrong it is

int copy_text(const char *src, size_t srclen,
char *dst, size_t dstlen)

{
if (srclen > dstlen)
return -1; // intending to return an error

while (*src != '\0')
*dst++ = *src++;

return 0; // intending to return success
}

Commonly Adopted Practice

7 | © 2013 Infoblox Inc. All Rights Reserved. 7 | © 2016 Infoblox Inc. All Rights Reserved.

• Clarify assumptions as a contract, handle violation with assert(3)
• Make code simpler and easier to understand/debug
• Yet safer

̶ In that the worst case for assumption violation is an assertion failure
• But the “worst case” can be a DoS vector

void copy_text(const char *src, size_t srclen,
char *dst, size_t dstlen)

{
// caller is responsible for validation/pass valid data
REQUIRE(dstlen >= srclen); // abort if this fails
while (*src != '\0')
*dst++ = *src++;

}

DBC + Assertion: BIND 9-Way

8 | © 2013 Infoblox Inc. All Rights Reserved. 8 | © 2016 Infoblox Inc. All Rights Reserved.

• 65 “security” fixes as of 9.10.3-P4
(example)
3861.[security] Missing isc_buffer_availablelength check results

in a REQUIRE assertion when printing out a packet
(CVE-2014-3859). [RT #36078]

• 28(+1) are assertion failure conditions
̶ With varying remote exploitability

• 2 others are other types of DoS vulnerability (memory leak, inf loop)
• Others include: ACL bugs, DNSSEC validation bugs, Cache logic

bugs, OpenSSLversion bumps, improving random numbers, etc.
̶ Some are not vulnerability

• Apparently no buffer overrun/code execution type of vulnerability
̶ Except one in libbind (essentially a BIND 8 bug)

A Closer Look at BIND 9’s Security Fixes

9 | © 2013 Infoblox Inc. All Rights Reserved. 9 | © 2016 Infoblox Inc. All Rights Reserved.

• Monolithic design
̶ Auth/Recursive/DDNS etc. in a single box
̶ Fate Sharing

• Inter-module dependency
̶ Making the code difficult to unit test

• Complicated architecture
̶ Mix of thread/non-thread modes, etc
̶ Hard to understand and maintain

• DBC/Assertion as a DoS vector
̶ Should still be much better than code execution-kind, but certainly

unacceptable in critical operation
̶ Poorer testability left more contract violation cases open than expected

Hindsight: Things That Did not Go Well

10 | © 2013 Infoblox Inc. All Rights Reserved. 10 | © 2016 Infoblox Inc. All Rights Reserved.

• Aimed to achieve clarity, safety and robustness
̶ Written in C++ instead of C
- Much type safer, many efficient and high-level utilities, much easier to unit-test

̶ Use exception instead of assertion
- Keep code concise and clear, yet allow catch exceptions and recover gracefully

̶ Automatic restart
- Can’t help in continued DoS, but still improve robustness for rare failures

̶ Multi-process model
- Avoid fate sharing

• Unfortunately project failed
̶ See Shane Kerr’s presentation at RIPE68

Aside: Dreams in BIND 10

11 | © 2013 Infoblox Inc. All Rights Reserved. 11 | © 2016 Infoblox Inc. All Rights Reserved.

• Examine possible issues to determine if it’s a security bug
̶ Crash reports at users mailing list, individual bug reports, suspicious results

from tests/static analysis, internal review, etc.
̶ Quite strict: tend to treat it as a security matter for various levels of severity

• Communication via HTTPS or PGP-encrypted email
• Fix and test internally
• Phased disclosure
• Documentation

̶ Description, Impact, Score, Workaround, Patch information
• Separate patch releases

̶ BIND 9.x.y-Pn

Handling Security Issues at ISC

