
壊れながらも使えるネットワーク

Matsuzaki 'maz' Yoshinobu <maz@iij.ad.jp>

使えるネットワーク

- 接続性
 - 認証
 - IPアドレス
 - default経路
 - DNS

- 行きの経路
- 帰りの経路
- 充足した帯域
- パケットフィルタ

壊れる

- 回線切断
- 機器故障
- 電源障害

何とかして対障害性を高める

耐障害性

高信頼化

- 壊れない機器
- バグ無しソフトウェア
- ・ 落ちない回線

個で頑張る

冗長化

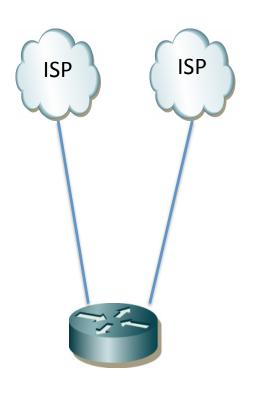
- 機器の多重化
- ・ 異経路の回線
- ・ 余剰帯域の確保

全体で頑張る

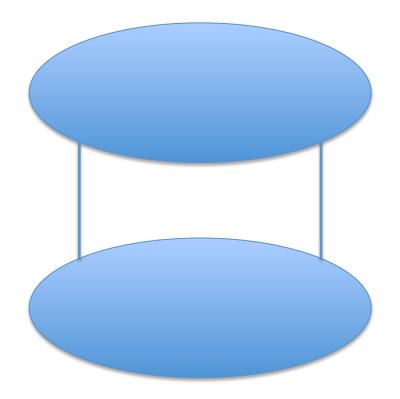
冗長設計

- 障害を想定
 - どこ&何が壊れるか
- 設計
 - 冗長化する箇所
 - 迂回に関わるプロトコル/制御
 - **コスト**
- 冗長設計は知見の宝庫
 - どんな冗長設計してますか?

冗長化のコスト

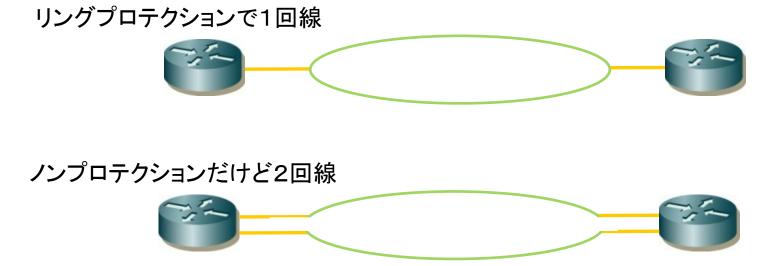

- 費用 対 効果
 - 余剰帯域や余剰設備 → コスト
 - 冗長による耐障害性 → 効果
- 主要なコストは時代とともに変化
 - 回線費用
 - -機器費用
 - 電力や場所代の費用
 - → 時々見直した方が良い

冗長構成


- 大きな迂回は影響が大きい
 - 他のネットワークへの影響
 - 網内での迂回経路の見積もり
- ・ 必要十分な迂回を行えば良い
 - 全体としてコストも小さくなる
 - 設計の見通しも良くなる

大きな迂回が発生しうる所

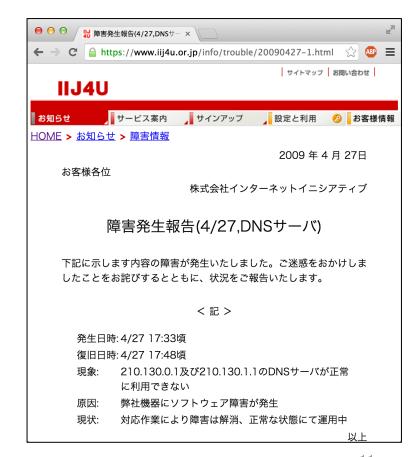
複数ISPからのトランジット



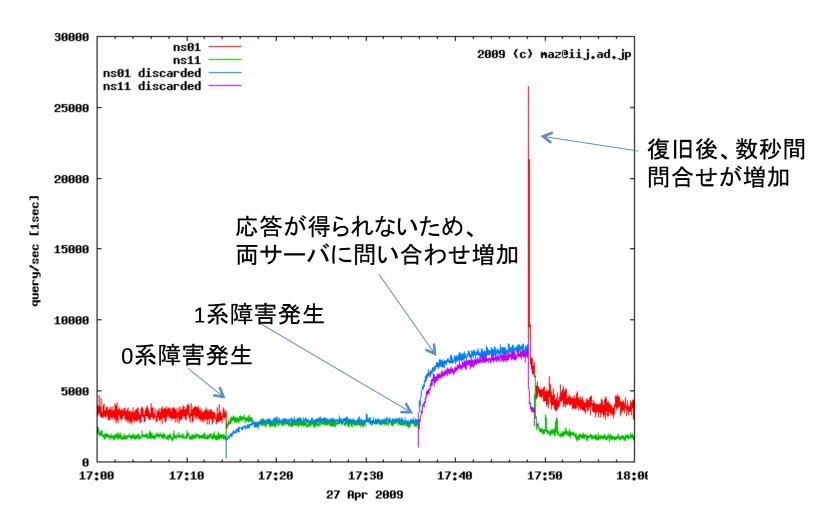
AS間の相互接続

個の信頼度と全体のバランス

• リングプロテクション 対 IP迂回


太平洋など長距離区間では、プロテクション のコストが高い

冗長化の弱点


- ・コストがかかる
 - 余剰の設備を維持しないといけない
- 複雑になる
 - 構成や切り替わりの状態
- 想定した障害にしか対応できない
 - 想定外の障害が起こると困る

障害事例

- ・ 個人向けサービスのキャッシュDNS障害
 - 2009年4月
- 全系統で障害発生
 - 最初に片系で障害発生
 - 次いでもう片系でも発生
 - 両系統が15分程度障害

キャッシュDNSと障害

知見

- 片系統の障害時はサービス継続できていた
 - 異常なクエリ傾向無し → 想定通り
- 両系統の障害時ではクエリの増加を確認
 - 再問い合わせが急増していた
- 復旧時には瞬間的に問い合わせが増加
 - 通常時の7倍程度

インターネットと障害

- インターネットのほとんどは他者による運用
 - 自分の運用範囲はごく一部
- 誰がどこでどんな障害起こすか分からない
 - 何が起こるかわからない
- しかも変動が続いている
 - 相互接続、ポリシ

困った

動的経路制御バンザイ

- 想定外の障害でもまだ動くかも
 - 全障害を想定して設計している訳じゃない
 - 使える経路があれば、勝手に使ってくれる

- インターネットで僕たちが取りうる手段
 - 充実した相互接続
 - 異経路による余剰帯域

(仮)復旧を目指す

- ・接続性の提供
 - 認証、IPアドレス、DNS
- ・ 到達性の確保
 - 疎通の担保
 - 輻輳の改善
 - 冗長構成の回復
- どこから手をつける?
 - →ユーザの利用方法に依存

流量

prefix	実トラヒックの占有率
ふがふが.135.0/24	5.46%
もふもふ.0.0/16	4.99%
ふよっと.0.0/16	3.87%
もよっと.128.0/17	2.29%
もがもが.20.0/22	1.92%
ふがもが.0.0/16	1.72%

- ブロードバンドユーザ向けトラヒックを24時間観測し、 経路毎にトラヒックを累積
- ちなみに全517528経路中の63176経路からトラヒック を観測していた

DNS

- サーバにアクセスする際にDNSで名前解決
 - いっぱい引かれている名前はよく使われている

- DNSで応答されるAレコードを調べてみよう
 - IPアドレスを経路情報にmap
 - みんながよく使うprefixが分かるはず!

みてみた

- コンシューマ向けキャッシュDNS
- 24時間でのべ 464,750,044 のIPアドレスを応答

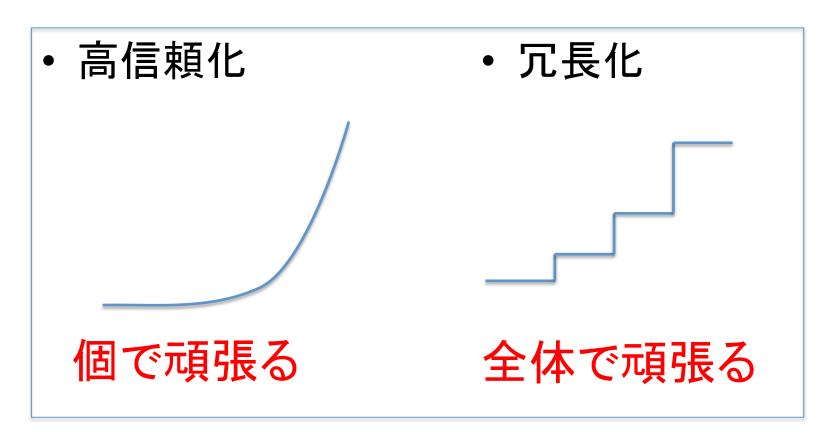
- 経路情報にmapすると44328経路
 - full routeは517528経路
 - ざっくりfull routeの9%弱ぐらい

利用状況

prefix	DNSでのヒット率	実トラヒックの占有率
ほげほげ.0.0/16	28%	1.3%
ふがふが.135.0/24	8%	9.1%
ほにより.148.0/22	2.4%	0.1%
ほげっと.0.0/14	2.3%	0.002%
ふがっと.0.0./13	2.2%	0.001%
むごむご.108.0/22	1.7%	0.1%
むがっと.128.0/17	1.3%	0.6%

トラヒック占有率との相関は無さそげ

復旧の優先順位


- 帯域の大きな回線から直していくのが良い
 - 主要な設備
 - 多くの人が利用していると考えられる

と思ってるんですが、何か知見ありますか?

聞いてみたい事

- 冗長設計
 - 考え方とか、構成とか
 - 困ってる事とか
 - みんなが忘れてそうな障害想定とか
- ・ 復旧の優先順位
 - 何か知見ありますか?

個の信頼度と全体 その2

僕たちが、「全体」だと思っているサービスや機能は他者とか利用者から見ると「個」かもしれない

データの多さと情報量

みんなに優しい

- ・端末に優しい
 - 簡素なファイルフォーマット
 - 再利用可能な形式
- ネットワークに優しい
 - 必要最小限で通信が完了する

いつもの連絡手段を試すよね

- ・ "普段"使っているアプリケーション
 - -電話
 - SNS
 - マイクロブログ
 - チャットツール
- 時代とともに変わる
- それぞれのコミュニティによって手段は異なる

非常時の通信モード

- ・輻輳の発生
- 有限のバッテリー

- こんな環境でも、"いつもの"アプリケーション が使えると嬉しい
 - 多少の機能縮退を我慢するとして

例えばこんなこと

- 輻輳対策
 - アクセスの集中に耐える
 - 最小限のパケット数で通信が完了する
 - 過度のデコレーションを諦める
 - ストア&フォワード強いね
- バッテリ対策
 - CPUに優しいファイル形式を使う
 - 人間が迷わない様な情報メニュー

非常時の通信ってどう考えますか?

- サービス提供者に提言することある?
 - 非常時モードいかがでしょう
- 利用者にお願いすることある?
 - どんな利用の仕方が困るか
 - どんな利用方法をして欲しいか
 - 非常時には非常時のアプリケーションに誘導?
- 僕たちで出来る事はありますか?
 - 公平制御?

まとめ

- ・ 壊れそうなところは冗長化
 - 依存関係を見落とさない様に
 - 個別の信頼度が高いと忘れがち
- 実はもっとできる事があるかもしれない
 - しかも日常の利用方法のままで
 - 情報提供は再利用や弱い端末に配慮を
 - アプリケーションは非常時モードがあると嬉しい