IoT 領域における ディープラーニングの実践と課題

ネットワークの知能化を目指して

Preferred Networks, Inc. 田中大輔 / 柏原秀蔵 2016/07/08

Preferred Networks, Inc. (PFN)

- 設立:2014年3月
- 場所:大手町(東京都千代田区)、San Mateo (CA, USA)
- 取締役:西川徹、岡野原大輔、長谷川順一
- ミッション:

IoT時代に向けた新しいコンピュータを創造する あらゆるモノに知能をもたせ、分散知能を実現する

IoT事業にフォーカスするため、株式会社Preferred Infrastructure (2006年3月創業)

NTT持株会社ニュースリリース

PFN is at Cisco Live! at San Diego

Preferred Networks, Inc. (PFN) is pleased to announce its participation in Cisco Live! 2015 in San Diego, California, June 8th-11th.

PFN is providing a live demo of surveillance video analytics based on its product, Deep Intelligence™ in Motion (DIMo) v1.0, which is designed to realize network-wide intelligence for IoT. In addition, PFN is demonstrating its latest results using deep learning for autonomous optimization of machine behaviors. A new demo video is being shown for the first time that shows how virtual race cars learn to control themselves using deep reinforcement learning.

2014年10月1日

日本電信電話株式会社 株式会社Preferred Networks

資本・業務提携契約を締結 代ビッグデータ技術の確立を目指して

代表取締役社長: 鵜浦博夫、以下NTT)と、株式会社Preferred 西川徹、以下PFN※)は、今後、著しい成長が見込まれるIoT分野 グデータ技術」の確立を目指し、本日、資本・業務提携について合意

加田は街や機団学羽にセルス是生評は街 マットワークやセキュリ 装ノウハウを持ちよ

▶ PDF ▶ PDF版ダウンロード

2016年1月26日

さくらインターネット株式会社

報道関係各位

さくらインターネット、演算に特化した「高火力コンピューティング」への取り組みを開始 ~Infiniband接続による大規模なGPUクラスタをPreferred Networks社と共同構築~

自社運営のデータセンターでインターネットインフラサービスを提供するさくらインターネット株式会社(本社:大阪市中央区、代表 取締役社長:田中 邦裕)は、深層学習など大量の計算資源を必要とするコンピューティング需要の高まりを受け、「高火力コンピューテ ィング」をコンセプトとした演算能力に特化したサービスへの取り組みを開始いたします。

> https://www.preferred-networks.ip/en/news/8331 http://www.ntt.co.ip/news2014/1410/141001a.html https://www.sakura.ad.jp/press/2016/0126 gpu/

自己紹介

田中 大輔

- 2015/4より PFN 入社 前職は金融系 SIer で金融工学ライブラリの担当
- メインは製品開発SensorBee メイン開発者、異常検知チーム

• 柏原 秀蔵

- 2011/11より PFI 入社 → PFN へ
- 趣味でセキュリティ
- 勉強会・AVTokyo など潜って発表することも
- メインは製品開発 最近は CI やパッケージング、go buildと Docker が友達

コンテンツ

機械学習・深層学習の概要エッジヘビーコンピューティングの概要

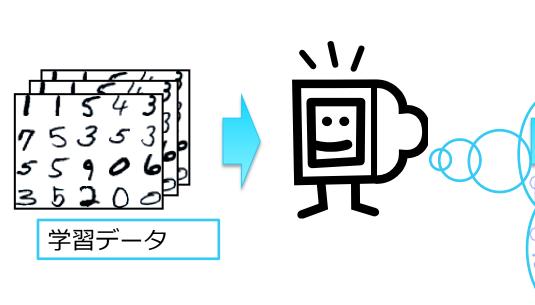
「ぶつからない自動運転車デモ」におけるネットワークの役割

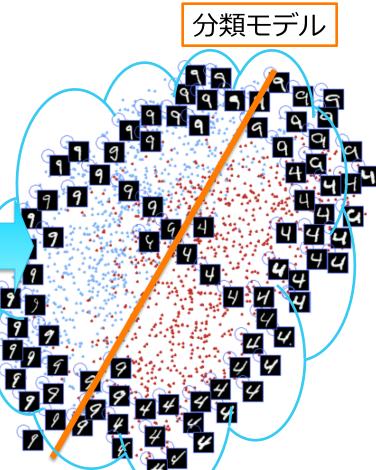
• PFN が考えるネットワークの知能化

• IoT 領域におけるネットワークの課題と期待

コンテンツ

• 機械学習・深層学習の概要 エッジヘビーコンピューティングの概要


「ぶつからない自動運転車デモ」におけるネットワークの役割


• PFN が考えるネットワークの知能化

• IoT 領域におけるネットワークの課題と期待

機械学習とは

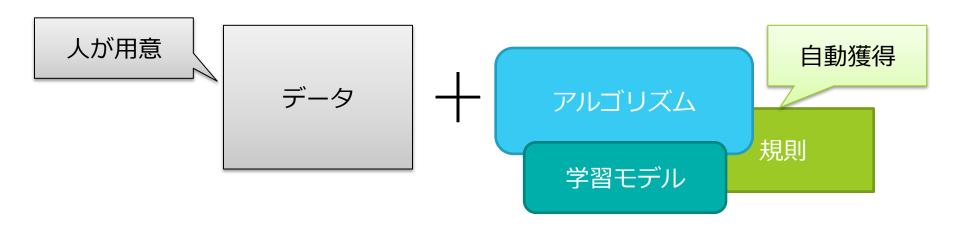
- 経験(データ)によって賢くなるアルゴリズムの研究
- データから知識・ルールを自動獲得する
- データの適切な表現方法も獲得する
- 人工知能の中で、人が知識やルールを 明示的に与える方法の限界から生まれてきた

ルールに基づく判断の限界と機械学習

「ゴルフ」 → スポーツ 「インテル」 → コンピュータ 「選挙」 → 政治

- 俗にルールベースと呼ばれる方法
- 最初は精度が悪いが頑張れば意外とどこまでもよくなる

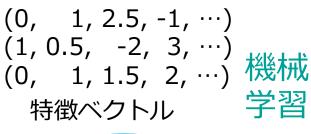
「ゴルフ」and「VW」 → 車 「インテル」and「長友」 → サッカー 「選挙」and「AKB」 → 芸能

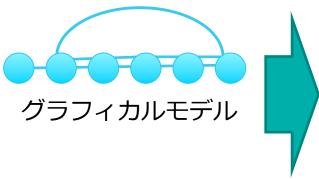

- 人手で書いたルールはすぐに複雑・膨大になる
- 複雑化したルールは引き継げなくなる

機械学習はデータに基づくアプローチ

ルールベース

機械学習




機械学習の典型的なプロセス

分野に依存しない 抽象化データ

分類/回帰 SVM/LogReg/PA CW/ALOW/Naïve Bayes/CNB/DT RF/ANN…

クラスタリング K-means/Spectral Clustering/MMC/ LSI/LDA/GM···

構造分析 HMM/MRF/CRF···

> 様々な手法 理論を適用

機械学習の典型的なプロセス

画像 センサー

分類/回帰 SVM/LogReg/PA CW/ALOW/Naïve Bayes/CNB/DT RF/ANN…

深層学習(ディープラーニング)

クラスタリング K-means/Spectral Clustering/MMC/ LSI/LDA/GM···

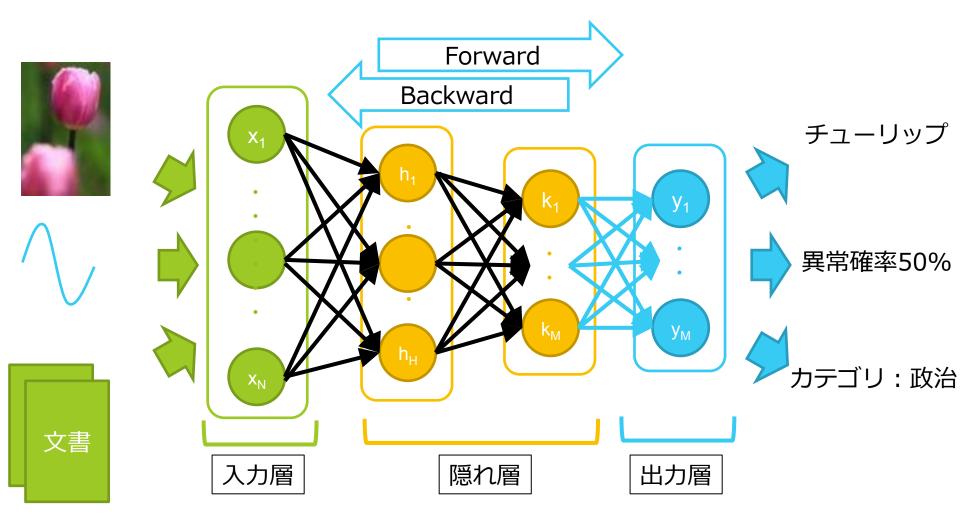
構造分析 HMM/MRF/CRF···

様々な様式の 生データ

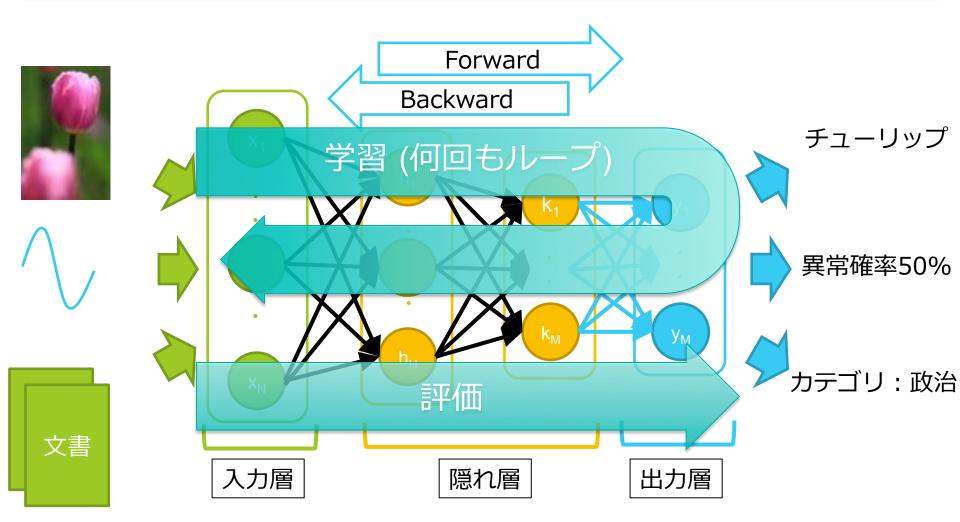
分野に依存しない 抽象化データ

様々な手法 理論を適用

参考:ディープラーニング 最先端の人工知能アルゴリズム(2016年1月8日配信) https://sciencechannel.jst.go.jp/M160001/detail/M150001015.html


深層学習とは何か?

• <u>教科書的にいうと</u>、以前は学習が困難と思われた、**段数の深いニュー** ラルネットワーク手法全般


• 歴史的にいうと、ニューラルネットワークが下火となった90年台後半 以降も研究を続けた**北米の研究グループ**が、2010年台に入って劇的 な成果をあげた一連の研究

社会的にいうと、これらの成果に目をつけた米大手企業の買収合戦・ 人材獲得合戦と、それらを大々的に報じた一連の社会現象

典型的なニューラルネットワーク (多層パーセプトロン)

典型的なニューラルネットワーク (多層パーセプトロン)

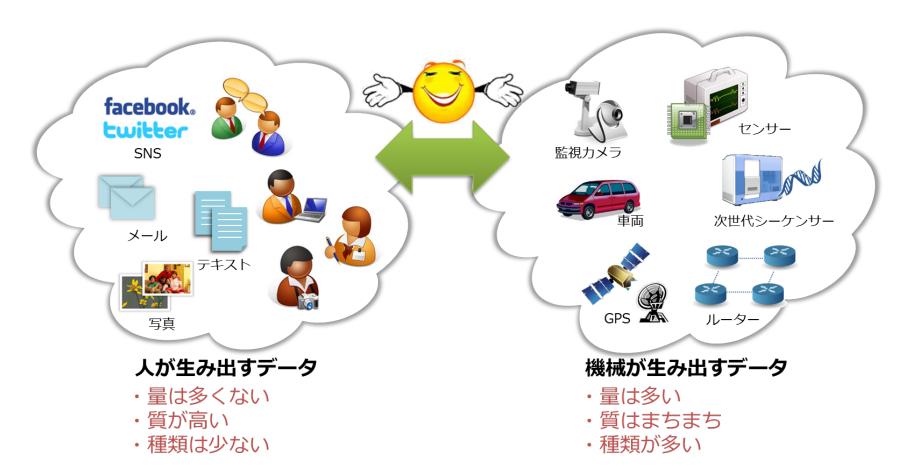
深層学習の成果が顕著な領域

- 音声認識
 - 認識精度が劇的に向上
 - すでに多くの音声認識エンジンで利用されている(と言われている)
- 画像認識・画像生成
 - 画像に映った物体の判定結果が劇的に向上
 - 人の目にも自然に見える画像が生成できるように
 参考: https://github.com/Newmu/dcgan_code

- ゲームプレイ
 - 昔のゲーム(インベーダーなど)を、ルールを教えずに画面とスコアだけで学習 一部のゲームで人間よりも強くなった
 - AlphaGo (2016/03)

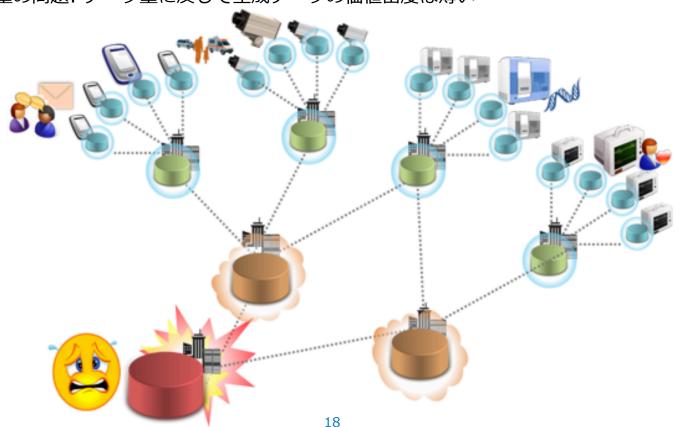
コンテンツ

機械学習・深層学習の概要エッジヘビーコンピューティングの概要

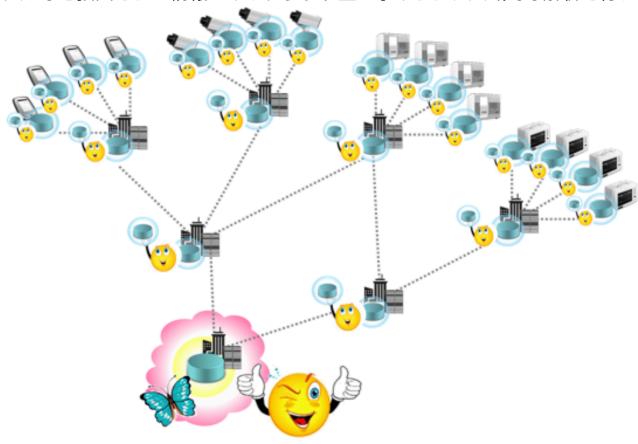

「ぶつからない自動運転車デモ」におけるネットワークの役割

• PFN が考えるネットワークの知能化

• IoT 領域におけるネットワークの課題と期待


IoT 時代の到来

- 膨大なデータがエッジ側で生成されるようになる
 - 映像はカメラ 1台 で年間 100TB、タービンセンサ、ポイントクラウド


IoT アプリケーションの直面する課題

- データの中央集権的収集は困難になる
 - データ量の爆発、データ種類の爆発
 - プライバシーの問題: クラウドヘデータをアップロードしたくない・できない
 - 情報量の問題: データ量に反して生成データの価値密度は薄い

エッジヘビーコンピューティング

- データを一か所に集めない前提のもとで深い分析を実現する
 - ネットワークのエッジ上のデバイスのローカルでデータを解析
 - 学習モデルなど抽出された情報だけがクラウド上に挙げられ、大域的な解析を行う

エッジヘビーコンピューティング

- 人が生み出すデータから、機械が生み出すデータへ
- データ量の爆発、データ種類の爆発によりデータの中央集権的収集がより困難となる

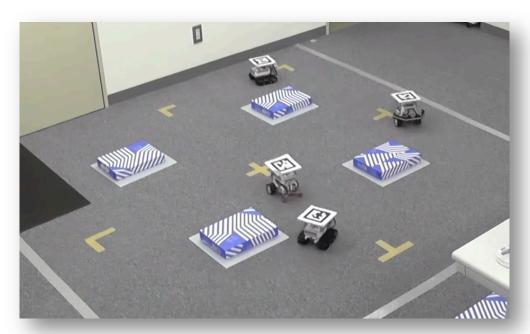
 PFN は IoT と機械学習 (ディープラーニング) を活用し、データを1 箇所に集めないことを前提とした、深い分析を実現する

コンテンツ

● 機械学習・深層学習の概要エッジヘビーコンピューティングの概要

• 「ぶつからない自動運転車デモ」におけるネットワークの役割

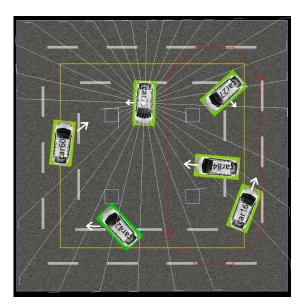
• PFN が考えるネットワークの知能化


• IoT 領域におけるネットワークの課題と期待

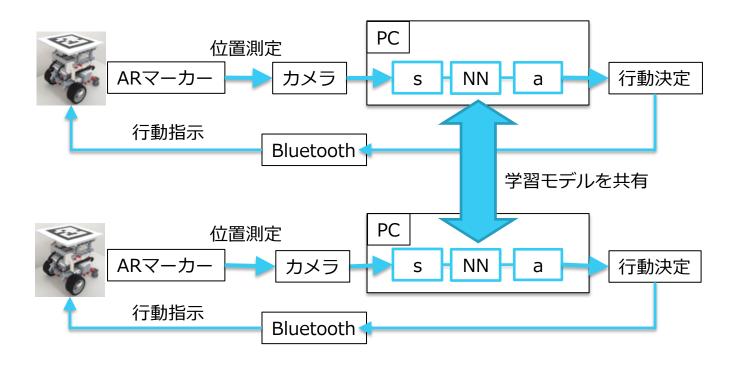
分散深層強化学習でロボット制御

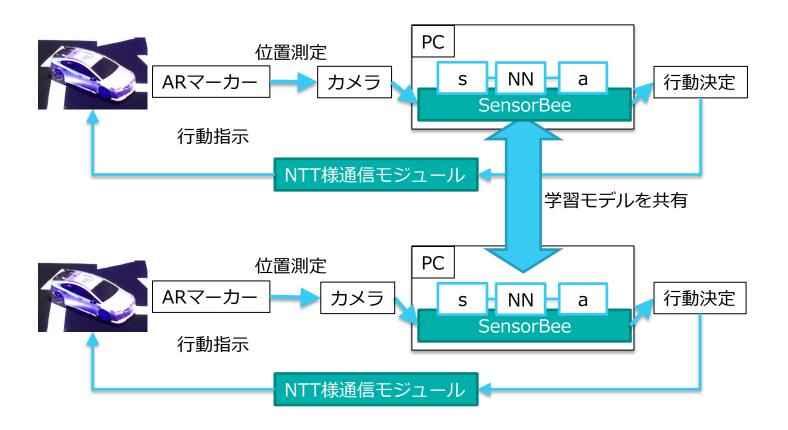
- 2015/06に公開、Interop Tokyo 2015 で発表
- 4台のロボットカーがゼロから運転を学習していくデモ
- 学習は実機を使用
- 参考:

https://research.preferred.jp/2015/06/distributed-deep-reinforcement-


learning/

自動走行のデモ


- 2016/01 CES2016@ラスベガスおよび 2016/02 NTT R&Dフォーラム2016にて展示
- 6台のロボットカーが互いを避けながら自動運転 さらに手動操作の車 (動画では赤い車) が邪魔しても回避
- 学習は実機ではなくシミュレーターを利用
- 参考: https://research.preferred.jp/2016/01/ces2016/



自動走行デモのコンポーネント構成図

自動走行デモのコンポーネント構成図2

ポイント

- 深層学習フレームワーク Chainer による実験・検証 GPUクラスタを利用し、モデルの学習を加速
 - 機械学習の課題がより難しくなったため、より実験に適した環境が必要だった
 - ロボットカーが4台から6台へ
 - ロボットカーのサイズが大きくなった
 - デモのコースが大きくかつ複雑になった
- ストリーム処理エンジン SensorBee でフレームワークを構築 センサーデータおよび通信モジュールと Chainer のシームレスな連携
- 現地では様々な無線電波が飛び交う状態 NTT様による安定した通信モジュールの提供
 - ロボットカーが増えるごとに、通信要件が厳しくなる
 - アプリケーションとしてどこまでの安定性を必要とするか→ネットワークインフラとしてどこまでの安定性を保証するか

自動走行デモから見る、これからの IoT

- 人にとっては複雑過ぎるルールの記述が、機械学習を応用することに よって、自動走行アルゴリズム (の1つ) が実現できた
 - 人の運転では考えられない、他車の回避方法を実現例:後ろに空間があった場合は迷わずバックする
 - 学習時には想定していなかった「路上に手動操作の車が混ざる」という状況にも対応

- より多種多様なセンサーデータを使用することにより、さらに複雑なアルゴリズムを実現できる可能性がある
 - ネットワーク側の設計がより重要となる
 - いろいろなモジュールのつなげやすさが、より高度な機械学習を利用したアプリケーション開発につながる

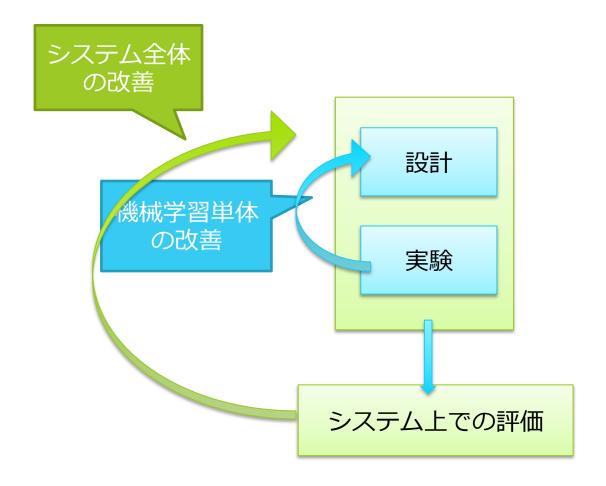
コンテンツ

機械学習・深層学習の概要エッジヘビーコンピューティングの概要

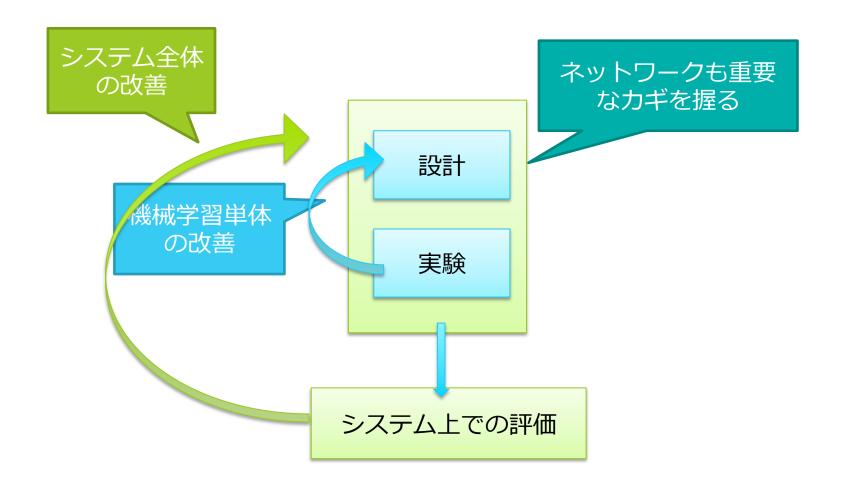
「ぶつからない自動運転車デモ」におけるネットワークの役割

• PFN が考えるネットワークの知能化

• IoT 領域におけるネットワークの課題と期待

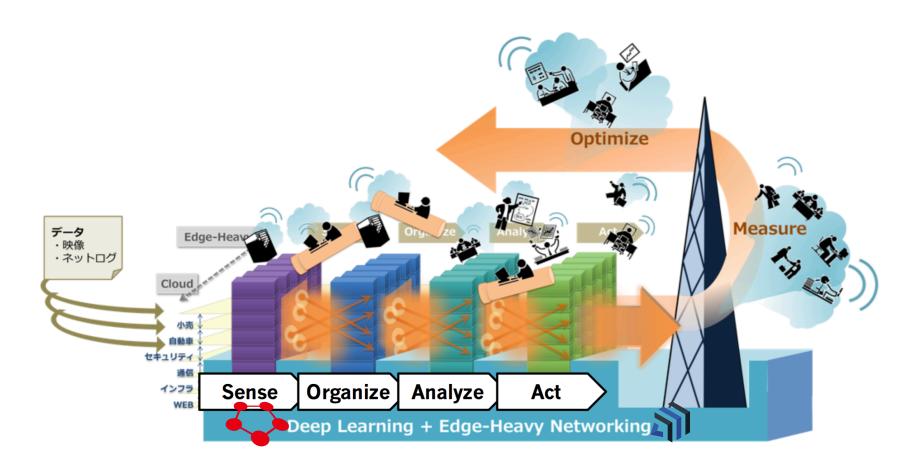

PFN が考えるネットワークの知能化

- ネットワークを行き交う情報はセンシングから制御へと、大きく目的 が変わっている
 - 多様な目的、背景を持つ IoT 機器をどのように制御するのか


- 複数のデバイスが1つの学習モデル共有して学習
 - 学習時間の短縮。1台では難しい学習を分散して学習
 - 別のデバイスが学習したモデルを、さらに別のデバイスが発展させる

- ネットワークに繋がれたシステムの全体が、1つの知能を持つように 設計していく
 - アルゴリズムとネットワークが融合する未来

システム全体の改善のループを継続させる


システム全体の改善のループを継続させる

機械学習の設計・実験においても、ネットワークの重要性が増している

PFN の目指す解決策

Deep Learning + Edge-Heavy Networking

コンテンツ

機械学習・深層学習の概要エッジヘビーコンピューティングの概要

「ぶつからない自動運転車デモ」におけるネットワークの役割

• PFN が考えるネットワークの知能化

• IoT 領域におけるネットワークの課題と期待

なぜ深層学習が実世界で使えるようになったか

- Internet of Things の到来
 - ネットワークにつながってさえいれば、クラウドの計算リソースを使える
 - 企業や個人がPFLOPS級超の計算リソースを自由に使える時代に
- モバイル機器の性能向上
 - モバイルでもTFLOPS級の計算リソースが利用可能に
 - デバイス上で深層学習の大部分が実現可能
- 低価格ハイスループットセンサの登場
 - 映像カメラ:数千円以下に。2020年代の車は10個以上のカメラを搭載
 - ゲノムシーケンサ:1,000ドルゲノム時代の到来
- アクチュエータの登場
 - 自動運転車、産業ロボット、ドローン
- 機械学習・ディープラーニング研究自体の進化

IoT における業界のさまざまな取り組み

- 活発化する産業向け IoT イーサネット
 - EtherNet/IP, EtherCAT, TSN, ...
 - レイテンシの固定・帯域幅の保証など、制御用に特化している

- 活発化する IoT 向け通信規格
 - ZigBee, BluetoothLE, NB-IoT, ...
 - 組込み機器開発に利用される無線規格

標準化団体、アライアンス、コンソーシアム、...

改めて、エッジヘビーコンピューティング

- つなげやすさ・つながりやすさは、アプリケーションの高度化に直結している →エッジヘビーへ
 - 新たなデバイスをネットワークにつなげて、今まで取れなかったデータを使う
 - エッジへビーコンピューティングにより、今まで捨てていたデータを使う
 - エッジヘビー+機械学習により、今までできなかった解析に挑戦する
- それぞれの規格には一長一短があるが、いずれにせよその先に、高度な知能 化を目指したアプリケーションが存在する
- PFNでは、SensorBee のプラグインにより対応していきたい
 - 参考: https://github.com/sensorbee/mgtt

ネットワークに期待すること

- ネットワークデザインとしてのエッジへビーコンピューティング
 - 多くはシステムデザインの視点から設計・開発されることが多いが、これからはネットワークデザインの視点も重要となる
- アプリ側から見た、IoT あるいはネットワークへの課題・期待
 - フィクション1 異なるデバイス (カメラとLIDAR等) から出力されるセンサーデータの時刻を同期させて、学習・評価する必要があるが、ある程度の妥協が必要だった
 - フィクション2 今まで有線でつながっていたモジュールを無線化することにより、 「つながらないことを前提」としたアーキテクチャデザインが必要だった
 - フィクション3 産業用デバイスとコネクティビティを上げるために、業界標準の 規格 (MTConnect, OPC-UA etc) に沿おうとしたが、いずれも表現力が足りなかった

ネットワークのデータがセンシングや監視だけではなく、直に制御に使われることを踏まえて、アプリケーションのデザインを一緒に考えていきたい

我々から問いかけ

- ネットワーク運用から見て、エッジヘビーコンピューティングを進める上で 障害となるものはなんでしょうか?
- ネットワーク層で解決出来るところとアプリケーションで解決出来るところの見極めが重要となります。協力して進めるにあたって、いいアイディアはあるでしょうか?
- 有線から無線になることにより、ネットワーク運用の視点から、アプリケーション側が気にしなければならないことはなんでしょうか?
- 乱立する標準規格について、ネットワーク運用としてどのように見ていますか?

• <u>もちろん、上記に限らず、質問お願いします!</u>

Copyright © 2016-

Preferred Networks All Right Reserved.

