JANOG44

OSSなWhitebox用NOSのSONiCが商用で使われている理由を考える

次世代技術本部 桑田 斉

hitoshi.kuwata.gt@apresiasystems.co.jp

©APRESIA Systems all right reserved.

JANOG44

◆桑田 斉(くわた ひとし)

◆APRESIA Systems 株式会社 次世代技術本部 技術開発部

◆2003年 日立電線株式会社※入社 ※ APRESIA Systemsのルーツ

- ◇ 以来、APRESIAスイッチシリーズの製品ソフトウェア開発に従事
- ◇弊社が昨年Edgecore NetworksのPremium Distributorになったことから、 ホワイトボックススイッチ、特にBarefoot Tofinoチップ搭載のWedgeBFによる P4プログラムが最近のメイン活動
- ◇ 過去のJANOGでの発表
 - JANOG43 SRv6でサービスチェイニングをやってみた
 - <u>https://www.janog.gr.jp/meeting/janog43/program/sc</u>

ホワイトボックススイッチとNOSの関係

(4) SONiC (2) Facebook, AT&T (3) Cumulus, OcNOS, Arrcus ベンダ 自社開発 OSS ベンダNOS NOS NOS NOS ディスアグリゲーション ベンダスイッチ ベンダ ホワイトボックススイッチ (OCP準拠) スイッチ SW/HW 統合 ① OCPにて、ハードウェアの設計仕様と、 **(5)** SONiC ブートローダに相当するONIEを公開 + Cisco Nexus ⇒ NOS無しでハードウェア単体売りが可能になり、 台湾系のホワイトボックスベンダが台頭 **XOCP** (Open Compute Project) XNOS (Networking Operating System)

LinuxのOS部分とネットワーク機能のコントロールプレーンをまとめたソフトウェア

ハード·NOS組合せ比較

NPRESIA

	ベンダNOS ベンダスイッチ	自社開発NOS ベンダNOS C ホワイトボックス ホワイトボックス 7		OSS NOS ホワイトボックス
NOS例	ベンダスイッチ 独自NOS	FBOSSCumulus, OcNOSdNOSArrcus		SONiC
適用事例		Facebook AT&T	IIJ, LINE さくらインターネット Yahoo Japan	Microsoft Alibaba LinkedIn
NOSの カスタマイズ	不可	可	不可	可
導入コスト	中	大 NOS自社開発	小~中 NOSライセンス料	小 NOSが無償
ベンダ サポート	NOS/HW両方 サポート有り	無し 自己責任	NOS部分は サポート有り	無し 自己責任 ②

① カスタマイズ性とコスト面ではベター (↑)

② 自己責任のため、運用側の負担・技術力が問われる (↓)

⇒ 本日はこれらの点について議論させていただきます

プレゼン内容と議論したいこと

◆プレゼン内容

- ◇ SONiCの紹介
- ◇ デモ① KVM環境でSONiC仮想マシンによるIP CLOSファブリック + Telemetry
 ◇ デモ② 実機SONiC (AS7712とWedgeBF32)によるIP CLOSファブリック

▶ 議論いただきたいこと

- ◇ White boxスイッチを運用することの問題・課題は何でしょうか?
- ◇ NOSの観点でも、ハードウエアの観点でも、ご意見お願いします!
- ◇ 逆に疑問点ありましたら、ぶつけていただいてもOKです!

SONiC紹介

NPRESIA®

JANOG44

SONiC(Software for Open Networking in the Cloud)とは?ヘPRESIへ。

- ◆ホワイトボックススイッチ用のOSSのNOS
 - ◇ 厳密にはONL上で動作するソフトウェア群
 - Apache License ver.2
- ◆ Microsoftが公開したソースコードが母体
- ◆ SAI (Switch Abstraction Interface)を定 義し、スイッチチップの差分を隠蔽したことで、 マルチベンダ対応を実現
- ◆BGPやLLDP、データベースなどのアプリケー ションはコンテナ化
 - ◆ 2019/4よりデフォルトのL3スタックとして FRRoutingを採用
- ◆BGPを使ってIP CLOSファブリックを構築可能

SONiC 対応デバイスの状況

◆スイッチベンダ ◆対応チップ

- Alpha
- Arista
- ♦ WNC
- Edgecore
- Celestica
- ♦ Dell
- Oelta
- Embedway
- ♦ Ingrasys
- ◊ Inventec
- ♦ MITAC
- Quanta

- ♦ Barefoot
- ♦ Centec
- Cavium
- Marvell
- Mellanox
- Nephos

Supported Devices and Platforms

Xin Liu edited this page on 2 Apr \cdot 70 revisions

Following is the list of platforms that support SONiC. Last updated Mar 2018.

Switch Vendor	Switch SKU	ASIC Vendor	Swich ASIC	Port Configuration	SONiC Image
Alpha	SNH60B0-640F	Broadcom	Tomahawk2	64x100G	SONiC- ONIE- Broadcom
Alpha	SNH60A0-320FV2	Broadcom	Tomahawk	32x100G	SONiC- ONIE- Broadcom
Arista	7050QX-32	Broadcom	Trident2	32x40G	SONiC- Aboot- Broadcom ²

<u>https://github.com/Azure/SONiC/wiki/Supported-Devices-and-Platforms</u> 上記サイトからSONiCのイメージも入手可能

SONiCを調査しているモチベーション

◆L2/L3のIP CLOS Fabricの最低限の 機能を持ったOSSのNOSであること https://

◆チップ・スイッチベンダがSONiCのサ ポートに力を割いていること

◆海外では現時点で、商用にて運用して いる事例が存在すること

Microsoft, Alibaba, LinkedIn

◆OCP Global SummitにてSONiCの みの独立したWorkshopが開催される など、注目が高まっていること

◆一方で、国内での情報が少ないこと
 ◇ 少しでも興味のある方々に有用な情報を纏めたい

OCP Global Summit 2019/3のアジェンダの一部 https://www.opencompute.org/events/past-summits

Engineering Workshop: SONiC			
SAI - Updates and Roadmap	Jai Kumar; Guohan Lu	Video	Slides
SONIC Event Driven Dataplane Telemetry	Matty Kadosh; Aviad Raveh	Video	Slides
InBand Network Telemetry an Open and Multi-			
platform Network Analytics for Disaggregated	Roberto Mari	Video	Slides
Data-Centers			
Transponder Abstraction Interface (TAI)	Scott Emery; Wataru Ishida	Video	Slides
LinkedIn Adoption of OCP SONiC	Zhenggen Xu	Video	Slides
Advanced Network Telemetry and Analytics Over SONiC	Eli Karpilovski	Video	Slides
Cloud Scale Telemetry – Real-time Telemetry and	William Chen; Ashoka Kallappa;	Video	Clides
Analytics at Scale	Tim Stevenson	video	Sildes
SONiC+: Adding Application Logic to Open NOS	Matty Kadosh; Aviad Raveh	Video	Slides
SONIC/SAI Support in Juniper DC Switches (SONIC	Lester Bird; Kumuthini	Video	Clideo
/ SAI support in Multi-PFE modular chassis) - POC	Ratnasingham	video	Sildes
Unlocking SONiC's Potential for Intent-Based Data Centers: Three Easy Steps	Nikos Triantafillis	Video	Slides
SONIC + ONL: Open-Source NOS with Broader	Wataru Jabida: Ctayon Nabla	Video	Clideo
Platform Support	wataru Ishida, Steven Nobie	video	Sides
SONiC - Latest Update and Roadmap Forward	Xin Liu; Lihua Yuan	Video	Slides
Alibaba's SONiC Development for Large Scale	Guobui Wood	Video	Clideo
Deployment and Operation	duonui wang	video	Silues
SONIC Deployments Powered by Programmable	Arkadiy Shaniro	Video	Slidos
Dataplane		VIGEO	Silues
cRPD – Cloud-Grade Routing as a Micro-Service for	Manish Gunta: Vinav Nallamothu	Video	Slides
Open Networking Platforms	manion dupta, vinay nanamotriu	- Nuco	Gildea

SONiCを使うことのメリットは?

NPRESIA®

SONiC

- ◆統一NOSによるマルチベンダ対応
- ◆ユーザランドへの機能追加
 - ◇ Telemetry等のツール拡張
 - ◇プロトコルスタックの拡張(例: goBGP)

◆SONiCベース + データプレーン拡張

- ◇ SONiCでは未使用のハードウェア 機能を有効化
- ◇P4によるデータプレーンプログラム による機能拡張(INT)

◆NOS自体のコスト削減

SONiC roadmap

APRESIA

2019 OCP Global Summit "SONiC/SAI and It's Rapid Growing Ecosystem"

https://146a55aca6f00848c565-a7635525d40ac1c70300198708936b4e.ssl.cf1.rackcdn.com/images/f86f93bac8c32db39dd851dcbbe5101c64321d91.pdf

ロードマップ詳細は以下を参照

https://github.com/Azure/SONiC/wiki/Sonic-Roadmap-Planning

事例①: LinkedIn

◆SONiC 201904ブランチに取り込まれた機能拡張(緑字)

* Green ones are contributed back to the community

OCP Global Summit 2019 "LinkedIn Adoption of OCP SONiC"

https://146a55aca6f00848c565-

a7635525d40ac1c70300198708936b4e.ssl.cf1.rackcdn.com/images/94fe15451133e4bea215baf9f63a984d624496f9.pdf

事例②: Alibaba (1/2)

◆設定をJson等の構造化されたデータとして扱えることがポイント

Configuration Management with structured APIs

OCP Global Summit 2019

"Alibaba's SONiC Development for Large Scale Deployment and Operation"

https://146a55aca6f00848c565-

a7635525d40ac1c70300198708936b4e.ssl.cf1.rackcdn.com/images/aa5200c2e337426ff6c31ced5f2b4b21839a0ba2.pdf

APRESIA 事例2: Alibaba (2/2) 監視のリアルタイム性向上、構造化されたデータによるイベント通知

Event-Based Device Monitoring

本日簡単なデモをします

OCP Global Summit 2019

"Alibaba's SONIC Development for Large Scale Deployment and Operation"

https://146a55aca6f00848c565-

a7635525d40ac1c70300198708936b4e.ssl.cf1.rackcdn.com/images/aa5200c2e337426ff6c31ced5f2b4b21839a0ba2.pdf

SONiCのアーキテクチャ

SONiC仮想マシンによる

試験環境構築

APRESIA®

JANOG44

SONiCの仮想化環境での試験方法

- ◆SONiCではvirtual switchのPlatformも用意されている
 - ◇ KVMとDockerの環境あり
 - <u>https://github.com/Azure/sonic-buildimage/blob/master/platform/vs/README.vsvm.md</u>
 - <u>https://github.com/Azure/sonic-buildimage/blob/master/platform/vs/README.vsdocker.md</u>
 - ◇ DailyビルドされたKVMとDockerのイメージを入手可能
 - https://sonic-jenkins.westus2.cloudapp.azure.com/job/vs/
- ◆今回の試験方法
 - ◇ 201904(最新)ブランチのSONiC KVMイメージにて試験環境を構築
 - Docker版のSONiCでは機能が制限されるため
 - ※環境構築の詳細は以下のテクニカルブログにて公開予定

https://www.apresiatac.jp/blog/

試験構成 SONiC仮想マシン 4台構成

事前準備

◆環境条件

- ◇ 仮想マシンUbuntu18.04 (kernel 4.15.0-54)
 - KVM: libvirt 4.0.0, QEMU(API) 4.0.0, QEMU(hypervisor) 2.11.1
 - KVMのネストを使うことで、仮想マシン上にてKVMを使用可能
- ◆必要ファイルの入手
 - ◇ 以下から、"sonic-vs.img.gz"をダウンロードし、解凍
 - <u>https://sonic-jenkins.westus2.cloudapp.azure.com/job/vs/job/buildimage-vs-image-</u> 201904/12/artifact/target/
 - ◇ 以下から、"sonic.xml"をダウンロード
 - <u>https://raw.githubusercontent.com/Azure/sonic-buildimage/201904/platform/vs/sonic.xml</u>
- ◆以下の4つのディレクトリを用意し、それぞれに上記の2つのファイルを配置
 - ♦ spine1, spine2, leaf1, leaf2
- ◆sonic.xmlを環境に合わせて変更

sonic.xmlの例 (Spine1)

```
NPRESIN
```

```
<?xml version="1.0" encoding="utf-8"?>
<domain type='kvm' xmlns:qemu='http://libvirt.org/schemas/domain/qemu/1.0'>
  <name>sonic-spine1</name>
  <memory unit='KiB'>2048000</memory>
  <currentMemory unit='KiB'>2048000</currentMemory>
 <vcpu placement='static'>1</vcpu>
 <resource>
   <partition>/machine</partition>
 </resource>
  \langle os \rangle
    <type arch='x86_64' machine='pc-i440fx-1.5'>hvm</type>
   <boot dev='hd'/>
 </os>
 <features>
   <acpi/>
   <apic/>
 </features>
 <clock offset='utc'/>
  <on_poweroff>destroy</on_poweroff>
  <on_reboot>restart</on_reboot>
  <on_crash>restart</on_crash>
  <devices>
    <emulator>/usr/bin/gemu-system-x86_64</emulator>
   <disk type='file' device='disk'>
      <driver name='qemu' type='qcow2' cache='writeback'/>
      <source file= '<環境によって値を変更>/spine1/sonic-vs.img'/>
      <target bus='virtio' dev='vda'/>
    </disk>
```

sonic.xmlの例 (Spine1)

SONiC仮想マシンの起動

◆virshコマンドで各装置を起動 (例: spine1、ファイル場所は適宜読み替え)

virsh create spine1/sonic.xml

◆以下のようにSONiCの仮想マシンが起動

\$ virsh list							
Id	Name	State					
96	sonic-spine1	running					
97	sonic-spine2	running					
98	sonic-leaf1	running					
99	sonic-leaf2	running					

◆sonic.xmlに記載したポート番号に対してtelnetすればログイン可能

- ◇ ユーザ: admin
- ◇ パスワード: YourPaSsWoRd

SONiCヘログイン(例:Spine1)

m s

liC	こへログイン (例:Spine1) ハPRESI	®
	\$ telnet 127.0.0.1 7001 Trying 127.0.0.1 Connected to 127.0.0.1.	
E	Escape character is '^]'.	
[Debian GNU/Linux 9 Spine1 ttySO	
	Spine1 login: admin Password:	
	Last login: Mon Jun 24 18:33:03 UTC 2019 from 10.0.0.2 on pts/0 Linux Spine1 4.9.0-9-2-amd64 #1 SMP Debian 4.9.168-1+deb9u2 (2015-12-19) x86_64 You are on	
	/ / ¥ ¥ O / ¥ ¥ ¥ _ ¥ / ¥ / _ ¥_ _ ¥	
-	Software for Open Networking in the Cloud	
l /	Jnauthorized access and/or use are prohibited. All access and/or use are subject to monitoring.	
ł	Help: http://azure.github.io/SONiC/	
ļ	\$	

SONiCのコマンドライン: config系

admin@Spine1:~\$ config ? Usage: config [OPTIONS] COMMAND [ARGS]... SONiC command line - 'config' command Options: --help Show this message and exit. Commands: AAA command line aaa ACL-related configuration tasks acl BGP-related configuration tasks bgp ECN-related configuration tasks ecn interface Interface-related configuration tasks interface_naming_mode Modify interface naming mode for interacting... load Import a previous saved config DB dump file. load mgmt config Reconfigure hostname and mgmt interface based... Reconfigure based on minigraph. load minigraph mirror session Platform-related configuration tasks platform portchannel Clear current configuration and import a... Export current config DB to a file on disk.

TACACS+ server configuration

VLAN-related configuration tasks

qos reload save tacacs vlan (省略)

JANOG44 25

SONiCのコマンドライン: show系

admin@Spine1:~\$ show ? Usage: show [OPTIONS] COMMAND [ARGS]... SONiC command line - 'show' command Options: -?. -h. --help Show this message and exit. Commands: Show AAA configuration aaa acl Show ACL related information Show IP ARP table arp **BGP** information bgp clock Show date and time Show ECN configuration ecn environment Show environmentals (voltages, fans, temps) Show details of the network interfaces interfaces Show IP (IPv4) commands İp ipv6 Show IPv6 commands line Show all /dev/ttyUSB lines and their info lldp LLDP (Link Layer Discovery Protocol)... logging Show system log Show MAC (FDB) entries mac Show existing everflow sessions mirror session Show mmu configuration mmu (省略)

SONiCの構成情報の考え方

◆SONiCのコマンドリファレンスは以下を参照

- https://github.com/Azure/sonic-utilities/blob/master/doc/Command-Reference.md
- ◆ SONiCのスタートアップconfig
 - ◇ "/etc/sonic/config_db.json"に、json形式でconfigを記述(以下を参照)
 - <u>https://github.com/Azure/SONiC/wiki/Configuration</u>
 - ◇ rebootあるいはconfig reloadにて設定を反映

config_db.jsonの例 (leaf1)

NPRESIA®

BGP **"BGP_NEIGHBOR"**: { Neighbor設定 *"*10, 1, 1, 1*"*: { ″asn″∶″65100″, "holdtime": "180", "keepalive": "60", "local_addr": "10. 1. 1. 2", "name": "Spine1", "nhopself": "0", "rrclient": "0" ł, *"*10. 2. 1. 1*"*: { ″asn″∶″65100″, "holdtime": "180", "keepalive": "60", "local addr": "10.2.1.2". "name": "Spine2", "nhopself": "0", "rrclient": "0" },

config_db.jsonの例 (leaf1)

config_db.jsonからFRRの設定に反映

APRESIA

◆ ``sonic-cfggen"よりconfig_db.jsonを読み込み、各コンテナに必要な情報をインプット

◆ bgpコンテナ内の"/usr/share/sonic/templates/bgpd.conf.j2"のjinja2のテンプレート から、FRR用の設定(/etc/frr/bgpd.conf)が生成される

```
※BGPのpeeringが開始されない場合は" sudo config bgp startup all"を実行
                                                                     root@Leaf1:/# cat /etc/frr/bgpd.conf
root@Leaf1:/# cat /usr/share/sonic/templates/bgpd.conf.i2
 (中略)
                                                                      (中略)
router bgp {{ DEVICE_METADATA['localhost']['bgp_asn'] }}
                                                                     router bgp 65110
 bgp log-neighbor-changes
                                                                       bgp log-neighbor-changes
 bgp bestpath as-path multipath-relax
                                                                       bgp bestpath as-path multipath-relax
                                                                       no bgp default ipv4-unicast
 no bgp default ipv4-unicast
 bgp graceful-restart restart-time 240
                                                                       bgp graceful-restart restart-time 240
 bgp graceful-restart
                                                                       bgp graceful-restart
{% if DEVICE_METADATA['localhost']['type'] == 'ToRRouter' %}
                                                                       bgp router-id 3.3.3.3
 bgp graceful-restart preserve-fw-state
                                                                       network 3.3.3.3/32
{% endif %}
                                                                       network 10.11.0.1/24
{% for (name, prefix) in LOOPBACK INTERFACE pfx filter %}
                                                                       neighbor 10.1.1.1 remote-as 65100
{% if prefix | ipv4 and name == 'Loopback0' %}
                                                                       neighbor 10.1.1.1 description Spine1
 bgp router-id {{ prefix | ip }}
                                                                       address-family ipv4
{% endif %}
                                                                         neighbor 10.1.1.1 activate
{% endfor %}
                                                                         neighbor 10.1.1.1 soft-reconfiguration inbound
{# advertise loopback #}
                                                                         maximum-paths 64
 (省略)
                                                                       (省略)
```

"bgpd.conf.j2"は以下にて参照可能

https://github.com/Azure/sonic-buildimage/blob/201904/dockers/docker-fpm-frr/bgpd.conf.j2

config_db.jsonのFFRへの反映 (leaf1)

```
$ vtysh
                                                           address-family ipv4 unicast
                                                            network 3.3.3.3/32
Hello, this is FRRouting (version 7.0.1-sonic).
                                                            network 10.11.0.0/24
Copyright 1996-2005 Kunihiro Ishiguro, et al.
                                                            neighbor 10.1.1.1 activate
                                                            neighbor 10.1.1.1 soft-reconfiguration inbound
Leaf1# show running-config
                                                            neighbor 10.2.1.1 activate
Building configuration...
                                                            neighbor 10.2.1.1 soft-reconfiguration inbound
                                                            maximum-paths 64
Current configuration:
                                                           exit-address-family
frr version 7.0.1-sonic
                                                          route-map RM_SET_SRC permit 10
frr defaults traditional
                                                           set src 3.3.3.3
hostname Leaf1
log syslog informational
                                                          route-map set-next-hop-global-v6 permit 10
log facility local4
                                                           set ipv6 next-hop prefer-global
no service integrated-vtysh-config
                                                          route-map ISOLATE permit 10
password zebra
                                                           set as-path prepend 65110
enable password zebra
                                                          route-map TO_BGP_SPEAKER_V4 deny 10
router bgp 65110
 bgp router-id 3.3.3.3
                                                          route-map FROM_BGP_SPEAKER_V4 permit 10
 bgp log-neighbor-changes
 no bgp default ipv4-unicast
                                                          ip protocol bgp route-map RM SET SRC
 bgp graceful-restart restart-time 240
 bgp graceful-restart
                                                          line vty
 bgp bestpath as-path multipath-relax
 neighbor 10.1.1.1 remote-as 65100
                                                          end
 neighbor 10.1.1.1 description Spine1
 neighbor 10.2.1.1 remote-as 65100
 neighbor 10.2.1.1 description Spine2
```

Leaf1, 2のBGPルーティング状況を確認

APRESIA

◆Leaf 1, 2の配下のhostネットワークがBGPによって広告されている

Leaf1# show ip route Codes: K - kernel route, C - connected, S - static, R - RIP, 0 – OSPF, I – IS–IS, B – BGP, E – EIGRP, N – NHRP, T - Table. v - VNC, V - VNC-Direct, A - Babel, D - SHARP, F - PBR. f - OpenFabric. > - selected route. * - FIB route B>* 1.1.1.1/32 [20/0] via 10.1.1.1. Ethernet0, 00:03:17 via 10.2.1.1, Ethernet4, 00:03:17 * B>* 2.2.2.2/32 [20/0] via 10.1.1.1. Ethernet0. 00:03:17 via 10.2.1.1, Ethernet4, 00:03:17 * C>* 3.3.3.3/32 is directly connected, lo, 00:03:59 B>* 4.4.4.4/32 [20/0] via 10.1.1.1. Ethernet0, 00:01:39 * via 10.2.1.1, Ethernet4, 00:01:39 $C \gg 10.1.1.0/24$ is directly connected. Ethernet0. 00:03:19 B>* 10.1.2.0/24 [20/0] via 10.1.1.1. Ethernet0, 00:01:39 * via 10.2.1.1, Ethernet4, 00:01:39 $C \gg 10.2.1.0/24$ is directly connected. Ethernet4. 00:03:19 B>* 10.2.2.0/24 [20/0] via 10.1.1.1. Ethernet0, 00:01:39 via 10.2.1.1, Ethernet4, 00:01:39 * C>* 10.11.0.0/24 is directly connected. Ethernet8, 00:03:19 B>* 10.22.0.0/24 [20/0] via 10.1.1.1. Ethernet0. 00:01:39 * via 10.2.1.1. Ethernet4, 00:01:39 Leaf1#

Leaf2# show ip route Codes: K - kernel route. C - connected. S - static. R - RIP. 0 – OSPF, I – IS–IS, B – BGP, E – EIGRP, N – NHRP, T - Table. v - VNC. V - VNC-Direct. A - Babel. D - SHARP. F - PBR. f - OpenFabric. > - selected route. * - FIB route B>* 1.1.1.1/32 [20/0] via 10.1.2.1. Ethernet0, 00:02:44 via 10.2.2.1, Ethernet4, 00:02:44 * B>* 2.2.2.2/32 [20/0] via 10.1.2.1. Ethernet0. 00:02:44 via 10.2.2.1, Ethernet4, 00:02:44 B>* 3.3.3.3/32 [20/0] via 10.1.2.1, Ethernet0, 00:02:44 via 10.2.2.1, Ethernet4, 00:02:44 * C>* 4.4.4.4/32 is directly connected, lo, 00:03:24 B>* 10.1.1.0/24 [20/0] via 10.1.2.1. Ethernet0. 00:02:44 via 10.2.2.1, Ethernet4, 00:02:44 * C>* 10.1.2.0/24 is directly connected, Ethernet0, 00:02:48 B>* 10.2.1.0/24 [20/0] via 10.1.2.1. Ethernet0. 00:02:44 * via 10.2.2.1, Ethernet4, 00:02:44 $C \gg 10.2.2.0/24$ is directly connected. Ethernet4. 00:02:47 B>* 10.11.0.0/24 [20/0] via 10.1.2.1, Ethernet0, 00:02:44 via 10.2.2.1. Ethernet4. 00:02:44 C>* 10.22.0.0/24 is directly connected, Ethernet8, 00:02:46 Leaf2#

Host1,2間の通信確認

NPRESIA


```
$ sudo ip netns exec host1 ping 10.22.0.2
PING 10.22.0.2 (10.22.0.2) 56(84) bytes of data.
64 bytes from 10.22.0.2: icmp_seq=1 ttl=61 time=1.08 ms
64 bytes from 10.22.0.2: icmp seq=2 ttl=61 time=4.71 ms
64 bytes from 10.22.0.2: icmp_seq=3 ttl=61 time=0.936 ms
64 bytes from 10.22.0.2: icmp_seq=4 ttl=61 time=1.13 ms
64 bytes from 10.22.0.2: icmp seg=5 ttl=61 time=1.32 ms
64 bytes from 10.22.0.2: icmp seg=6 ttl=61 time=1.06 ms
^C
--- 10.22.0.2 ping statistics ---
6 packets transmitted, 6 received, 0% packet loss, time 5037ms
rtt min/avg/max/mdev = 0.936/1.711/4.711/1.347 ms
$ sudo ip netns exec host2 ping 10.11.0.2
PING 10, 11, 0, 2 (10, 11, 0, 2) 56(84) bytes of data.
64 bytes from 10.11.0.2: icmp_seq=1 ttl=61 time=1.56 ms
64 bytes from 10.11.0.2: icmp seq=2 ttl=61 time=1.02 ms
64 bytes from 10.11.0.2: icmp_seq=3 ttl=61 time=1.13 ms
64 bytes from 10.11.0.2: icmp seq=4 ttl=61 time=1.14 ms
64 bytes from 10.11.0.2: icmp_seq=5 ttl=61 time=1.20 ms
^C
--- 10.11.0.2 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4005ms
rtt min/avg/max/mdev = 1.023/1.214/1.569/0.188 ms
```

今後SONiCにて対応されると思われる機能

◆BGP unnumbered + RFC5549 ※トライしている人たちもいるが動作未確認

EVPN VXLAN

◆MLAG (サーバ収容の装置冗長)

◆Virtual chassis (下図)

SONiC Disaggregated Chassis Demo at Booth Photos - Chassis Demo 1.png See all photos Add to a creation Q Till 0 🎇 Edit & Create 👻 📝 Share 品 Spine-3 Spine-5 Spine-1 Spine-2 ARISTA Spine-4 DELL CISCO INNOVIUM JUNIPER TOMAHAWK 3 9336C-FX2 Z9100 ASN: 65004 6k0219 ASN: 65006 ASN: 65007 ASN: 65003 10:10 10 10 10 ASN:65005 10:12.12.12.12 Lo: 13.13.13.13 Lo: 5.5.5.5 Lo: 11.11.11.11 Leaf-1 Leaf-2 Leaf-3 MELLANOX BAREFOOT **BROADCOM JR2** SN2700 Arista 7170 Arista SMV206 ASN 65002 ASN: 65002 ASN: 65002 Lo:3.3.3.3 Lo:4.4.4.4 Lo: 8.8.8.8 OCP global summit 2019/3 https://146a55aca6f00848c565a7635525d40ac1c70300198708 936b4e.ssl.cf1.rackcdn.com/ima ToR 1 TOR 2 ToR 3 ges/69b40fc6b426e4580dbeb7ff ASN: 65000 ASN: 65001 ASN: 65010 10:1.1.1.1 10:2.2.2.2 10:14.14.14.14 3ded8b64b4294fd2.pdf

SONiCのStreaming Telemetry

▶環境準備など、以下を参照

- https://github.com/Azure/sonic-telemetry
- https://github.com/Azure/sonic-telemetry/blob/master/doc/grpc_telemetry.md
- https://github.com/Azure/sonic-telemetry/blob/master/doc/dialout.md

◆ ツールのインストール

- ♦ SONIC
 - go get -u github.com/Azure/sonic-telemetry/dialout/dialout_client_cli
- ♦ Telemetry Collector側
 - go get -u github.com/Azure/sonic-telemetry/dialout/dialout_server_cli
- ◆ ツールの実行
 - ♦ Telemetry Collector側
 - ./dialout_server_cli -allow_no_client_auth -logtostderr -port 8081 insecure -v 2
 - SONIC
 - Config_db.jsonにStreaming Telemetryを設定した上で以下を実行
 - /usr/sbin/dialout_client_cli -insecure -logtostderr -v 1

config_db.json内のStreaming Telemetry設定

APRESIA

■ SONiC側

admin@Leaf1:~/telemetry/bin\$./dialout_client_cli -insecure -logtostderr -v 1 10713 11:02:44.020514 9242 dialout_client_cli.go:43] Starting telemetry publish client 10713 11:02:44.029522 9242 dialout_client.go:675] psubscribe to __keyspace@4__:TELEMETRY_CLIENT|* failed dial unix /var/run/redis/redis.sock: connect: permission denied 10713 11:02:44.042284 9242 dialout_client_cli.go:45] Exiting telemetry publish client: psubscribe to __keyspac ./dialout_client 10713 11:02:47.170522 9250 dialout_client_cli.go:43] Starting telemetry publish client 10713 11:02:47.191440 9250 virtual_db.go:142] PFC WD not enabled on device 10713 11:02:47.225113 9250 dialout_client.go:318] Dialout service connected to {192.168.122.1:8081} successfully for HS_RDMA

■ collector側

```
$ ./dialout_server_cli -allow_no_client_auth -logtostderr -port 8081 -insecure -v 2
                       3325 dialout_server.go:66] Created Server on localhost:8081
10713 20:05:22.479318
10713 20:05:22.479409
                        3325 dialout server cli.go:90] Starting RPC server on address: localhost:8081
== subscribeResponse:
update: <
timestamp: 1563015922616359917
 prefix: <
  target: "COUNTERS_DB"
 >
 update: <
  path: <
   elem: <
    name: "COUNTERS"
   >
   elem: <
    name: "Ethernet*"
```

```
>
```


SONiC実機による

試験環境構築

FRRがLinux上で動作するときのイメージ

◇ FRRはこのインタフェースを介して他ルータとルーティング情報を交換

◆FRRが構築したルーティング情報をFIBに登録

◆ルーティング実施時は、LinuxカーネルにてFIBを参照

FRRをLinux上で動作させたときのFIBの例

:~\$ ifconfig -a

- ens3: flags=4163<UP, BROADCAST, RUNNING, MULTICAST> mtu 1500
 inet 192.168.1.11 netmask 255.255.255.0 broadcast 192.168.1.255
 inet6 fe80::eeb:d2ff:fefc:2900 prefixlen 64 scopeid 0x20<link>
 ether 0c:eb:d2:fc:29:00 txqueuelen 1000 (Ethernet)
- ens4: flags=4163<UP, BROADCAST, RUNNING, MULTICAST> mtu 1500
 inet6 fd00:0:0:18::1 prefixlen 64 scopeid 0x0<global>
 inet6 fe80::eeb:d2ff:fefc:2901 prefixlen 64 scopeid 0x20<link>
 ether 0c:eb:d2:fc:29:01 txqueuelen 1000 (Ethernet)
 ... (省略)

実機(WedgeBF32)にてSONiC起動時のインタフェースの見え方 **へPRESIへ**。

◆物理インタフェースがLinuxのインタフェースとしても見えている

◇ これはスイッチ・チップベンダのドライバで実現(SONiCの機能ではない)

admin@sonic:~\$ Interface	show interfaces Lanes	status Speed	MTU	Alias	Vlan	Oper	Admin	Туре	Asym PFC
Ethernet0	0, 1, 2, 3	100G	9100	Ethernet0	routed	down	up	 N∕A	 N/A
Ethernet4	4, 5, 6, 7	100G	9100	Ethernet4	routed	down	up	N/A	N/A
Ethernet8	8, 9, 10, 11	100G	9100	Ethernet8	routed	down	up	N/A	N/A
Ethernet12	12, 13, 14, 15	100G	9100	Ethernet12	routed	down	up	N/A	N/A
admin@sonic:~\$ (中略) 6: <u>Ethernet0</u> : link/ether inet 10.0. valid_l 7: <u>Ethernet4</u> : link/ether inet 10.0.	ip addr <no-carrier, broa<br="">00:90:fb:62:0c: 0.0/31 scope glo ft forever prefe <no-carrier, broa<br="">00:90:fb:62:0c: 0.2/31 scope glo</no-carrier,></no-carrier,>	DCAST,UP 57 brd f bal Ethe rred_lft DCAST,UP 57 brd f bal Ethe	> mtu 9 f:ff:ff rnetO foreven > mtu 9 f:ff:ff rnet4	100 qdisc pfi :ff:ff:ff r 100 qdisc pfi :ff:ff:ff	fo_fast s	state DOW state DOW	N group c N group c	default q default q	len 1000 len 1000

ホワイボックススイッチ上にてFRRが動作するための課題 **へPRESIへ**。

◆SONiCが無くても、以下は実施可能

- ① 物理インタフェースをLinux上のインタフェースとして認識
- ② 外部ルータと物理インタフェースを介してルーティング情報を交換
- ③ Linuxカーネル内のFIBテーブルを更新

◆SONiCが実施する処理

④ ハードウェア内のルーティングテーブルへの反映

◆Quagga伝統のFIB push interfaceを使用 http://docs.frrouting.org/en/latest/zebra.html#zebra-fib-push-interface \Diamond ◇ FIBやNetlinkを参照する方法もあるが、OS等の環境依存あり FRR FIB push I/F Routing-state interactions https://github.com/Azure/SONiC/wiki/Architecture fpmsyncd (1) Redis (DB) (3) zehra **FIB** Push fpmsvncd interfaceからSAI Orchagent モデルへ変換 Redis (DB) redis-serve syncd containe (6) PPL_D syncd orchagent (7) syncd ASIC_DB sai api asic sdk SAI swss containe database containe (9) ASIC SDK asic drivers network drivers ハードウェア asic transceiver

SONiCにてハードウェアルーティングを設定する流れ

試験構成 Broadcom x 1 + Barefoot x 2 **\APRESIA**

実機にてSONiCを起動

admin@Spine:~\$ show platform summary Platform: x86_64-accton_as7712_32x-r0 HwSKU: Accton-AS7712-32X

ASIC: broadcom

admin@Spine:~\$ show interfaces status

Interface	Lanes	Speed	MTU	Alias	Vlan	0per	Admin	Туре	Asym PFC
Ethernet0	49, 50, 51, 52	40G	9100	hundredGigE1	routed	up	up	 N∕A	N/A
Ethernet4	53, 54, 55, 56	40G	9100	hundredGigE2	routed	up	up	N/A	N/A
Ethernet8	57, 58, 59, 60	N/A	9100	hundredGigE3	routed	down	up	N/A	N/A
Ethernet12	61, 62, 63, 64	N/A	9100	hundredGigE4	routed	down	up	N/A	N/A

admin@Leaf1:~\$ show platform summary

Platform: x86_64-accton_wedge100bf_32x-r0

HwSKU: montara

ASIC: barefoot

admin@Leaf1:~\$ show interfaces status

Interface	Lanes	Speed	MTU	Alias	Vlan	0per	Admin	Туре	Asym PFC
Ethernet0	0, 1, 2, 3	40G	9100	Ethernet0	routed	up	up	N/A	N/A
Ethernet4	4	25G	9100	Ethernet4	trunk	up	up	N/A	N/A
Ethernet5	5	25G	9100	Ethernet5	routed	up	up	N/A	N/A
Ethernet6	6	25G	9100	Ethernet6	routed	down	up	N/A	N/A
Ethernet7	7	25G	9100	Ethernet7	routed	down	up	N/A	N/A
Ethernet8	8, 9, 10, 11	100G	9100	Ethernet8	routed	down	up	N/A	N/A

• •

リンクアップ時のルーティング更新のログ

リンクアップ前後のLinuxのルーティングテーブルへPRES小。

■リンクアップ前 admin@Leaf1:~\$ show ip route
Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF, I - IS-IS, B - BGP, E - EIGRP, N - NHRP, T - Table, v - VNC, V - VNC-Direct, A - Babel, D - SHARP, F - PBR, f - OpenFabric, > - selected route, * - FIB route
C>* 3.3.3.3/32 is directly connected, lo, 01w3d04h
C>* 10.11.0.0/24 is directly connected, Vlan1001, 01w1d00h
C>* 10.249.28.0/23 is directly connected, eth0, 01w3d04h

■リンクアップ後 admin@Leaf1:~\$ show ip route (中略) B>* 1.1.1.1/32 [20/0] via 10.1.1.1, Ethernet0, 00:01:07 C>* 3.3.3.3/32 is directly connected, lo, 01w3d04h B>* 4.4.4.4/32 [20/0] via 10.1.1.1, Ethernet0, 00:01:07 C>* 10.1.1.0/24 is directly connected, Ethernet0, 00:01:08 B>* 10.1.2.0/24 [20/0] via 10.1.1.1, Ethernet0, 00:01:07 C>* 10.11.0.0/24 is directly connected, Vlan1001, 01w1d00h B>* 10.22.0.0/24 [20/0] via 10.1.1.1, Ethernet0, 00:01:07 C>* 10.249.28.0/23 is directly connected, eth0, 01w3d04h

◆プレゼン内容

サマリ

- ◇ SONiCの紹介
- ◇ デモ① KVM環境でSONiC仮想マシンによるIP CLOSファブリック + Telemetry
 ◇ デモ② 実機SONiC (AS7712とWedgeBF32)によるIP CLOSファブリック

▶議論いただきたいこと

- ◇ White boxスイッチを運用することの問題・課題は何でしょうか?
- ◇ NOSの観点でも、ハードウエアの観点でも、ご意見お願いします!
- ◇ 逆に疑問点ありましたら、ぶつけていただいてもOKです!

