MPLS Multi-Protocol Label Switching

(株) 東芝

永見 健一

目次

- ・ ラベルスイッチ技術(MPLS)の歴史
- 動作概要
 - LSP設定解放トリガ
 - ラベル配布プロトコル
 - ラベルのフォーマット
- LSRの応用分野
 - Explicit Routing, VPN, QoS/CoS
- MPLS-WGの現状

Toshiba Corp. / K. Nagami

歴史

• 1995 April : colip BOF at IETF

• 1996 march : IP switch by Ipsilon

• Dec. : Tag switch BOF(IETF)開催

• 1997 march : MPLS WG(IETF)設立

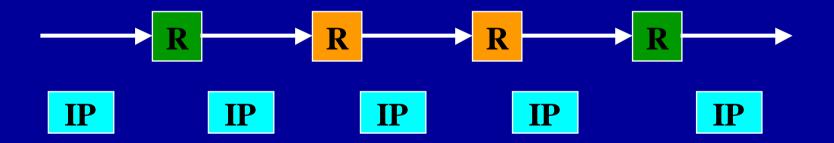
LSRとは?

- LSR(Label Switching Router)はラベルス イッチ技術(MPLS)を実現するルータ
- IP転送部とラベル転送部を持ち、ラベルによる転送を行う

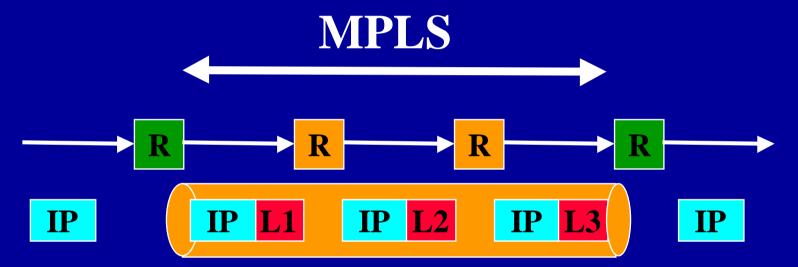
LSRの特徴(1)

- ラベル転送により従来のパケット処理をカットスルー
 - 低遅延
 - 高スループット
 - IP経路表と異なる経路を選べる
- 可変長経路情報検索(Best Match)を固定 長ラベル検索(Exact Match)で実行

LSRの特徴(2)


- ラベル転送部のスケジューリング機能を用いたQoS/CoS
- LSPのトンネル機能を用いたVPN
- IP経路と異なる経路を通るLSP設定による Explicit Routing

LSRの構成



LSRのパケット転送

Hop-by-Hop転送

LSRのパケット転送

LSP: Label Switched Path

L1,L2,L3: ラベル

ラベルとLSPに流すパケットストリームの 対応づけが必要

Toshiba Corp. / K. Nagami

LSP制御とパケット転送

- LSP制御フェーズ
 - LSP設定・解放トリガ
 - ラベル配布プロトコル(LDP)
- パケット転送フェーズ
 - ラベルの挿入

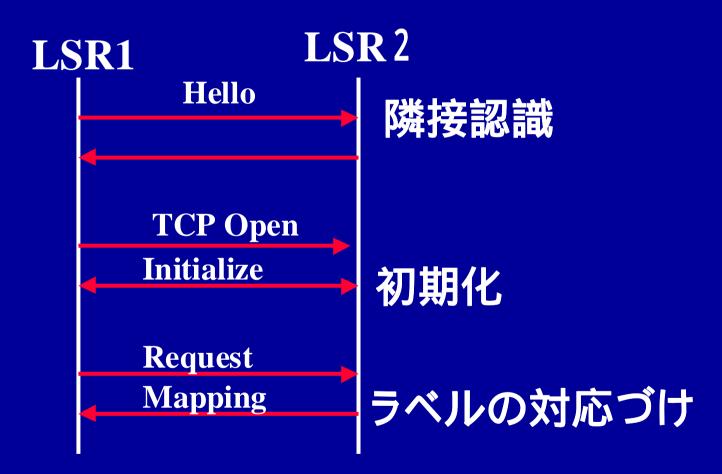
LSP制御とパケット転送

- LSP制御フェーズ
 - LSP設定・解放トリガ
 - ラベル配布プロトコル(LDP)
- パケット転送フェーズ
 - ラベルの挿入

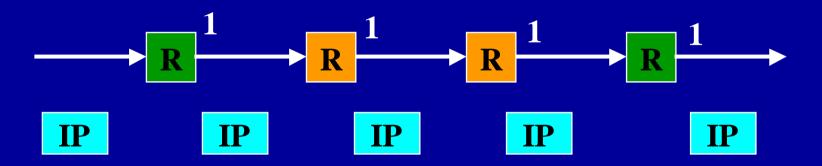
LSPの設定・解放トリガ

- トラヒックドリプン
 - 特定のパケット受信によりLSPを設定
 - 一定期間トラフィックがないとLSPを解放
- トポロジードリブン
 - 経路エントリができたときにLSPを設定
 - 経路エントリがなくなったときにLSPを解放
- リクエストドリプン
 - 帯域要求などによりLSPを設定・解放

Toshiba Corp. / K. Nagami

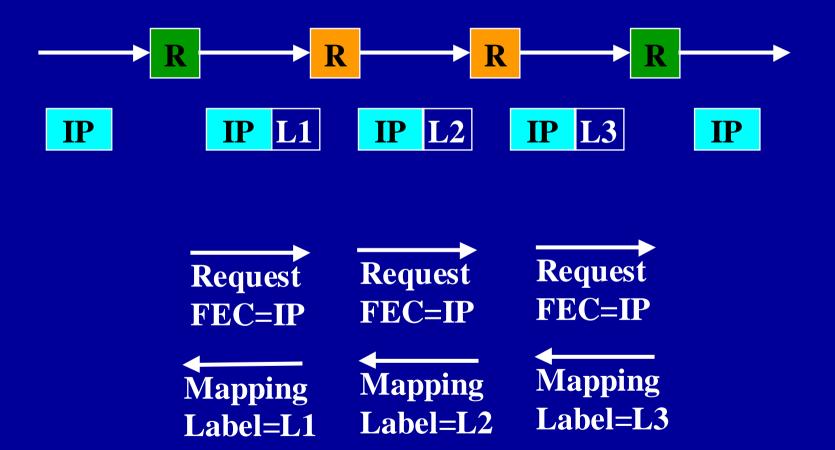

LSP制御とパケット転送

- LSP制御フェーズ
 - _LSP設定・解放トリガ
 - ラベル配布プロトコル(LDP)
- パケット転送フェーズ
 - ラベルの挿入

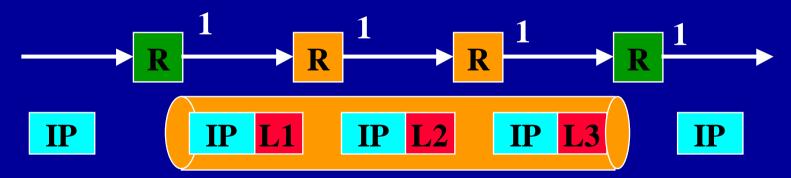

LDP(1)

- TCPでメッセージ交換するためメッセージ 紛失がない
- Helloパケットによる隣接の認識
- ラベルとパケットストリーム(FEC)の対応付け・解除
 - FEC: Forwarding Equivalence Class パケットの集合 例) 10.1.1.0/24

LDP(2)


Label Mapping(0)

	Out		Out		Out		Out
Dst	I/F	Dst	I/F	Dst	I/F	Dst	I/F
IP	1	IP	1	IP	1	IP	1


Hop-by-Hop Forwarding

Label Mapping(1)

Toshiba Corp. / K. Nagami

Label Mapping(2)

LSP: Label Switched Path

	Out
Dst	Label
IP	L1

In	Out	In	Out	In	Out
Label	Label	Label	Label	Label	Label
L1	L2	L2	L3	L3	

LSP制御とパケット転送

- LSP制御フェーズ
 - LSP設定・解放トリガ
 - ラベル配布プロトコル(LDP)
- パケット転送フェーズ
 - ラベルの挿入

ラベル

- 一般的にデータリンク層へッダとネットワーク層へッダの間にラベル(shim/label stack)を挿入
- ATMの場合はVPI/VCIがラベル FRの場合はDLCIがラベル但し、shimも使用

ラベルの例(イーサネット)

Ether header

Shim (Label Stack)

IP Header + Data

イーサヘッダのイーサタイプ値

- Unicast: 0x8847

- Multicast: 0x8848

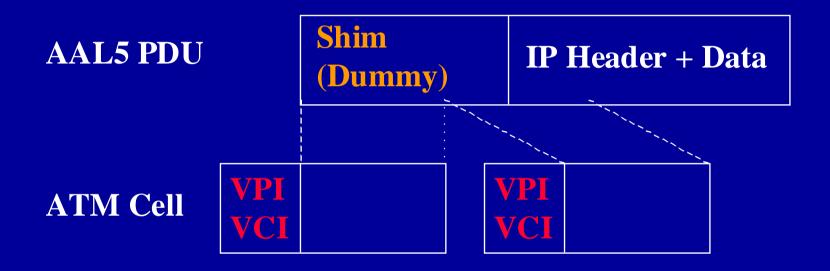
• EthernetとLLC/SNAPカプセル化も同様

Toshiba Corp. / K. Nagami

ラベルの例(PPP)

PPP header

Shim (Label Stack)


IP Header + Data

• PPPへッダのinformation値

- Unicast: 0x0281

- Multicast: 0x0283

ラベルの例(ATM)

- ・ VPI/VCIがラベル
- Shim headerのトップはダミー

ラベルスタックエントリ(LSE)

4bytes

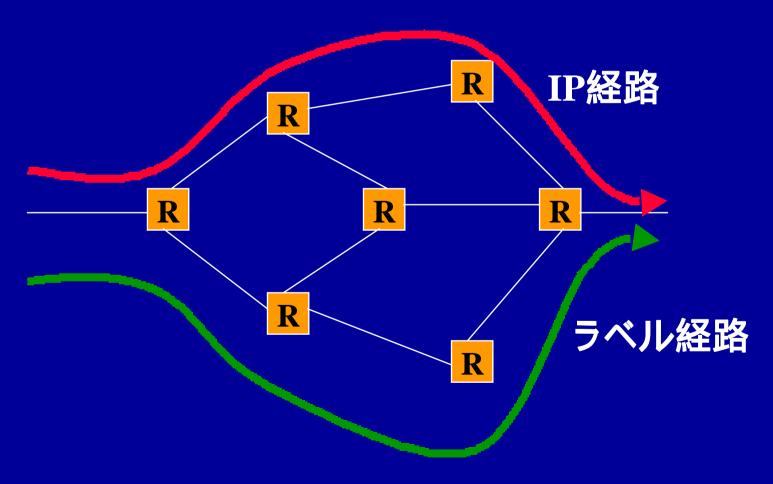
Label	Exp.	S	TTL
20 bits	3bits	1bi	t 8bits

- ラベルスタックは4バイト
- ラベルは20ビット
- Exp.は実験用の予約フィールド
- Sビットを使って階層化可能

ラベルスタックの階層化

Datalink	LSE	LSE	LSE	Network
Layer	S=0	S=0	S=1	Layer

Top Bottom Label

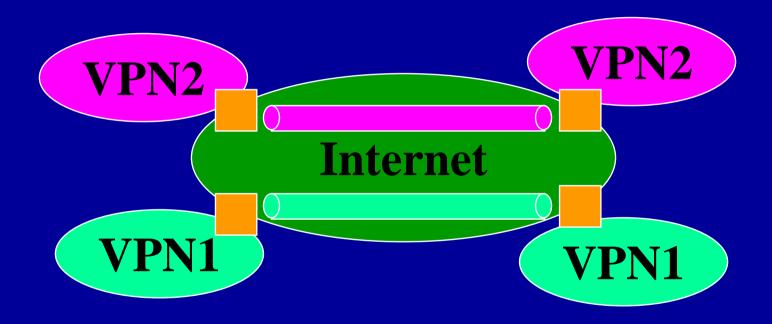

LSRの特徴

- ・ 高速・低遅延パケット転送......
- Explicit routing
- VPN
- QoS/CoS

Explicit Routing (1)

- IP経路情報と異なる経路にLSPを設定
 - 負荷分散
 - -QoS
- ・初段LSRが途中の経路を指定
- CR-LDP/RSVPの2方式が存在

Explicit Routing (2)



Toshiba Corp. / K. Nagami

VPN (1)

- LSPでプライベートアドレスのパケット等を 転送
- 経路情報の交換は、ピアモデルとオーバレイモデルがある
 - ピアモデル:グローバル経路情報とプライベート経路情報の両方を1つのプロトコルで扱う
 - オーバレイモデル:プライベート経路情報は、 LSPでトンネルされる

VPN (2)

QoS/CoS

- ・レイヤ2モジュールのスケジューラで QoS/CoSを実現
- Explicit Routingを使ってIP経路以外の経路を通ることが可能

MPLS WGの状況

- ユニキャスト基本仕様完了
 - LDP他
- トラヒックエンジニアリング基本仕様完了
 - CR-LDP
 - RSVP

MPLS WG Draft Status(1)

- Informational RFC
 - Requirements for Traffic Engineering
- Standard RFC
 - None

MPLS WG Draft Status(2)

- RFC Editor Queue
 - MPLS Architecture
 - MPLS Label Stack
- In hands of IESG
 - MPLS ATM
 - MPLS FR
 - VCID
 - GIT

MPLS WG Draft Status(3)

- IESG Last Call
 - LDP
 - RSVP Extensions
 - CR-LDP
 - Framework (Informational)

MPLS WG Draft Status(4)

- Active Draft
 - MPLS Support of Diffserv
 - LDP MIB
 - TE MIB
 - LSR MIB

MPLS WGの今後

- LSP Recovery
- OAM Function
- Signaling improvement for TE
- Optical Cross Connect