BIGL®BE

BIGLOBE AS2518を まるごと仮想環境へ"コピー"してみた BIGLOBEパート

JANOG 53 2024年1月19日

ビッグローブ株式会社 プロダクト技術本部 ネットワーク技術部 開発G 滝口敏行

BIGLOBE 商用環境

- BIGLOBE ISPバックボーンの規模感 •
 - インターネット階層:Tier2相当
 - 国内コア拠点:東京、大阪、福岡 ٠
 - DCの数:10拠点 ٠
 - ネットワーク装置(L2SW/Router)数:50台以上 ٠
 - JuniperやCiscoなどのマルチベンダーで構成 •
 - 総トラフィック:3.2Tbps以上(2023年度6月時点) ٠

Tier1

Tier2

Tier3

Tier3

ピア数:220以上のASと相互接続 ٠

Tier3

Tier2

フルルート 持っている

Tier3

東京

バックボーン運用の課題

BIGLOBEでは作業品質を高めるためにレビューポイントを多く設定している。 しかし設定内容の正当性判断がレビュワーの経験に依存しており、ベテラン社員に作業レビューが集中してしまっている課題がある

バックボーン運用の課題

BIGLOBEのバックボーンを熟知したベテラン社員を増やしたいが、、 全体のトポロジー図を定期的にメンテする余裕がなく、情報の鮮度を保ててない。 全体のトポロジーと動作を把握するには商用のNWコンフィグを読んで、 理解できるスキルと経験が必要となってしまうジレンマ。

商用環境相当のStaging環境を用意することが難しいので(コスト面でも工数面でも)、 バックボーン全体の動作理解ができる環境も用意ができない。 地道に商用環境での運用経験を積むことでしか全体動作イメージを持てない。

→現状ではベテラン社員を増やすことは容易ではない。

ベテラン以外でも、<mark>商用に近い環境を素早く作成して</mark> 自由に動作検証できる"コピー環境"が欲しい

その環境を使うことで、商用環境の動作を理解を促し ベテラン社員にしかできなかった作業内容の正当性判断に関して、 ベテラン社員以外でも対応できるようにしたい

"コピーする"システムを BIGLOBEの商用環境で試してみた

商用環境を"コピーする"システム構成

BIGLOBEでコピーした構成とオペレーション評価の概要

- オペレーション評価
 - スコープ:
 - 東京リージョンのコアルータ、エッジルータの本番Config •
 - 確認内容: .
 - 本番Configからモデルデータ/トポロジ生成が可能か •
 - モデルデータから構築した検証環境が本番と同等か
 - 対外ピアNW ユースケース: • 1st STEP: Privateピア(PNI)の増設作業 コアルータ(2) エッジルータ(2) 新設回線 2nd STEP: Public(IX)ピアの増設作業 (Cisco) (Juniper) PNI 2 3rd STEP: Transitピアの増設作業 • PNI作業は全体の 約20%を占め、 エッジルータ③ 一番シンプルなケースな トラフィック (Cisco) ため、1st STEPに選定 POI 1 の流れ Flet's網 POI 3 大阪と福岡も概ね同じ構成,Config設計のため、 東京でのオペレーション評価ができれば エッジルータ(4) (Juniper) 他の地域にも適用できると判断して検証 POI 2

コアルータ①

(Juniper)

既設回線

PNI 1

エッジルータ①

(Cisco)

ユースケースの流れ

過去のPNIの事例をもとに ユースケース評価やってみた

このシステムができたのが直前で、ちょうどいいタイミングのPNI案件がなかったので過去事例をなぞってみました。。。

まずは、作業前の商用環境をコピーする

コピーする操作の流れはAppendixを参照してください。

商用環境の"コピー"できたトポロジー図(BGP)

商用環境の"コピー"できたトポロジー図(Layer3)

Layer3のトポロジー図では ユースケーステストで必要となるE2Eトラフィックを 印加するIperfノードの構成も生成される。 (Flowデータをもとに生成される)

このユースケースでは、 エッジルータ②とPNI2ルータのインターフェース間の 接続は済んでいるため、トポロジー図としては Layer3のリンクが存在している。

POI側の構成も同様に、 Iperfノードが自動生成されている。

BGP Flowデータのサンプル

送信元Prefix	送信先Prefix	rate[Mbps]
X.Y.Z.0/22	A.B.C.0/24	85793
XX.YY.ZZ.0/24	A.D.C.0/24	2738
XXX.YYY.ZZZ.0/22	A.B.E.0/24	21955
X.YYY.ZZZ.0/22	A.C.D.0/24	1044

作業前の商用環境を"コピー"した構成の動作確認

・PNI 2のIperfノードから POI 2のIperfノードへのTraceroute 結果

PNI 2 0.064 ms 0.012 ms 0.010 ms
 PNI 1 0.024 ms 0.015 ms 0.013 ms
 エッジルータ① 0.035 ms 0.018 ms 0.017 ms
 エッジルータ④ 0.035 ms 0.021 ms 0.021 ms
 POI 2 0.082 ms 0.029 ms 0.028 ms
 POIのlperfノード 0.044 ms 0.164 ms 0.056 ms

・IperfのE2Eトラフィックも欠損なく転送されている。

PNI Side(Transmit)	1
96 Mib/s	
64 Mib/s	
32 Mib/s	
0 b/s 05:48:30 05:49:00 05:49:30 05:50:00 05:50:30 05:51:00 05:51:30 05:52:00 05: Name	52:30 05:53:00 Last * ~
 clab-emulated-endpoint01-iperf2: eth1 	82.6 Mib/s
 clab-emulated-endpoint01-iperf3: eth1 	21.2 Mib/s
clab-emulated-endnoint01-inerf0: eth1	2 65 Mih/s
POI Side(Receive) 96 Mib/s 64 Mib/s 32 Mib/s 0 b/s 0 b/s 0 5:48:30 05:49:30 05:50:00 05:50:30 05:51:00 05:51:30 05:52:00 0	5:52:30 05:53:00
Name	Last * ~
 clab-emulated-endpoint02-iperf3: eth1 	82.5 Mib/s
Clab-emulated-endpoint02-iperf0: eth1	21.0 Mib/s
clah-emulated-endooint02-ioerf1: eth1	2.68 Mih/s

"コピー環境"を操作して作業手順を確認する

"コピー環境"を操作して作業手順を確認する

設定作業後の経路確認

・PNI 2のIperfノードから POI 2のIperfノードへのTraceroute 結果

1 PNI2 0.100 ms 0.018 ms 0.014 ms 2 エッジルータ② 0.030 ms 0.015 ms 0.014 ms 3 エッジルータ④ 0.032 ms 0.020 ms 0.018 ms 4 POIのIperfノード 0.038 ms 0.024 ms 0.030 ms

エッジルータ①経由からエッジルータ②経由で トラフィックの経路が変わっていることを確認

操作後の状態確認してレビュー結果の判定

作業手順における作業後の事後確認のチェック項目が"コピー環境"ですべて確認できた

対象BGPネイバーの状態を確認 show bgp summary | match A.A.A.A ▶ BGP sessionが確立していることを確認 ★AS番号(左から2番目の数字)がAAAAであることを確認 # 送信経路を確認 show bgp neighbor A.A.A.A | match "Advertised prefixes" ▼フルルートを送信していないことを確認 # 受信経路を確認 show bgp neighbor A.A.A.A | match "Active prefixes" ▼フルルートを受信していないことを確認 show route source-gateway A.A.A.A terse Mas-pathが AAAA I のprefixを確認 ▼ネイバーASのOrigin経路のLPがX00、MEDがZ00であることを確認 Mas-pathが AAAA AAAA以外のAS I のprefixを確認 ▼ネイバーAS配下のASの経路のLPがY00、MEDがX00であることを確認 # 対象ネイバーとのBGP設定を確認 show bgp neighbor A.A.A.A | match "Description|Export|Import" Mescription: PNI#2_ipv4

Export: [asAAAA-peer-out] Import: [asAAAA-peer-in]

16

操作後の状態確認してレビュー結果の判定

経路切り替えの際にもトラフィック欠損が発生しないことも確認できた

→"コピー環境"上で、 作業手順の正当性を判定できるチェックポイントをすべて満たすことができた

評価結果のまとめ

バックボーンチームメンバーからのコメント

- コンフィグおよび再現試験にて機械的にチェックできるようになるためレビューの正確性は上がる。
 また、人の経験に依存しないチェックができるので、経験が浅い人でもpeer作業できるようになりそう。
 ただ、手順書作成がまだ手動なので時間短縮にはならないと思う。
- 対向からどう動くかの振る舞いも見れるので(変な経路漏らしていないか、など)、
 そのチェック項目が作れて作業品質がさらに向上できる。
- 実機は評価環境しかなくStaging用途のものはないから、
 実環境を再現できるのはこの"コピー環境"がBIGLOBEとしては唯一なので、
 このシステムがあるだけでも非常に有用。
- Prefixを削って他PNIやIXピアヘトラフィックを移植する場合は、現状はベテランの感覚値になっている。
 これがロジカルにシミュレートできるので、フルルートを扱った時の振る舞いにも対応してくれるのを期待してる
- BGPポリシーの妥当性判断として、障害試験して冗長できているのかが確認もできるので便利。
- 非定型作業の動作シミュレーションして本番手順を作るのにも使えそう。

バックボーンメンバーからは1st STEPとしてのPNIユースケースの評価は良かった 2nd STEPでPublicピア, 3rd STEPにてTransitピアのユースケースに 進めても効果は十分期待できるとわかった。

できなかったこと

- IOSXRのポリシーをすべてJunosポリシーに変換できなかった。 …PNI向けのシンプルなポリシー構造のみフォーカスしてコンバートさせる形となった
- 外部AS補完する際に、本番だとPNIだけでなくPublic(IX)ピアもあり、 まだシステムとしてPublicピアの1対多のネイバー関係が対応していないため、 Publicピアは丸ごと除外してしまっている。
- "コピー環境"はJuniperのコンテナルータ(cRPD)に統一しているが、ほかのルータOSも対応して OS固有の振る舞いも再現できるようにしたかった …現状はciscoが対象だった場合は作業内容確認時の"コピー環境"への設定コマンドをjunos向けに変換する処理を作って対応
- "コピー環境"のGrafanaのトラフィックグラフにおいて、IF名がコンテナルータのIF名となっていて、 OriginalのIF名にはできなかった。 IperfノードはNWアドレスも見れるようにして、どのPrefixがどれだけのトラフィック量を持っているかわかるようにしたい。

これからやっていきたいこと

- Public(IX)ピア/Transitピアの対応
 …PNIよりも複雑なケースが多く、非定型作業になることがおおいため、対応できればベテランへの負荷集中をより削減できる。
- Junos/Cisco以外のネットワークベンダーの拡張
 …2社以外のNWベンダーのルータの導入も進んでおり、運用に合わせて対応ベンダーも増やせる形にしたい。
- "コピー環境"でドライランした結果を商用環境向けに設定コンフィグを提案する機能の実装。
- →これらを実現して、対応できるユースケースを拡大していき 人も業務もスケールできるISPバックボーン業務を作り上げていきたい。

BGBE

Appendix-1 コピーの流れ

事前準備

トライアル向けの環境変数の情報を設定する - SOURCE_ASはPNIのAS番号

- DEST ASはPOIのAS番号

それ以外の項目は以下URLの 本システムのGithub参照

https://github.com/ool-mddo/playground/blob/main/demo/copy to emulated env /doc/provision.md

トライアルのシステムを起動する

cat demo vars <省略>

all steps: target network name NETWORK NAME="biglobe deform" NETWORK INDEX="\${NETWORK NAME} index.json"

step2-2, preffered peer parameter (use original asis node/interface name) PREFERRED NODE="edge-tk01" PREFERRED INTERFACE="ge-0/0/3.0" EXTERNAL ASN=65550

step1-2 SOURCE AS=XXXX DEST AS=YYYY

\$ docker compose up -d [+] Running 9/9						
\sqrt{N}	✓ Network playground default Created 0.1s					
\checkmark (Container	playground-batfish-1	Started	0.1s		
\checkmark (Container	playground-bgp-policy-parser-1	Started	0.1s		
\checkmark (Container	playground-netoviz-1	Started	0.1s		
\checkmark (Container	playground-batfish-wrapper-1	Started	0.0s		
\checkmark (Container	playground-fish-tracer-1	Started	0.0s		
\checkmark (Container	playground-netomox-exp-1	Started	0.0s		
\checkmark (Container	playground-model-conductor-1	Started	0.0s		
√ (Container	playground-api-proxy-1	Started	0.0s		

作業前の本番環境を再現 - Step1-2

②次に外部ASの情報を補完 補完の際に以下の情報を追加する

- BGPのFlowデータ収集ツールから移設対象の外部ASにおける送信元・送信先Prefixごとの通信量データを収集したリスト

作業前の本番環境を再現 - Step1-2

・Layer3のトポロジー上は 増設するPNI2との回線はStep1-2スクリプトで addl3.csvの情報をもとにエッジルータ②→PNI 2 へのL3のリンクが自動生成される。

・IperfノードはFlowデータの 送信元PrefixごとにIperfノードを各PNIへ、 および送信先PrefixごとにIperfノードを各POI のルータへ自動で配置される

Step1-2の追加情報ファイル

- 除外したいBGPネイバーを定義したリスト

except.csv
except_peer
AAA.BBB.CCC.DDD

- 増設するPNIの情報(IF情報、対向BGPのネイバーアドレス)の定義リスト

addl3.csv
srcrouter,srcif,srcaddress,peeraddress,netmask,peeras,srcas
Edge-RT#1,aeX.X,A.B.C.D,AA.BB.CC.DD,30,AAAAA,2518

- BGPのFlowデータ収集ツールから移設対象の外部ASにおける送信元・送信先Prefixごとの通信量データを収集したリスト

flowdata.csv source,dest,rate,dstAS X.Y.Z.0/22,A.B.C.0/24,85793,AAAAA XX.YY.ZZ.0/24,A.D.C.0/24,2738, AAAAA XXX.YYY.ZZZ.0/22,A.B.E.0/24,21955, AAAAA X.YYY.ZZZ.0/22,A.C.D.0/24,1044, AAAAA

作業前の本番環境を再現 - Step 2-1

④生成したトポロジーデータからコンテナ基盤上にEmulated環境をデプロイする

\$ bash demo_step2-1.sh <省略>							
PLAY RECAP *************	********	************	*****	********	***		
docker-host	: ok=13	changed=8	unreachable=0	failed=0	skipped=0	rescued=0	ignored=1
localhost	: ok=55	changed=10	unreachable=0	failed=0	skipped=0	rescued=0	ignored=0

Containerlab上にEmulated環境の構成が起動されていることが確認できる

\$ sudo containerlab inspecttopo clab/clab-topo.yaml INFO[0000] Parsing & checking topology file: clab-topo.yaml							
#	Name	Container ID	Image	Kind	State	IPv4 Address	IPv6 Address
1	clab-emulated-ASAAAAA-9	b79a823289bb	crpd:22.1R1.10	juniper_crpd	running	172.20.20.3/24	2001:172:20:20::3/64
2	clab-emulated-ASAAAAADD	c85862ed4a79	crpd:22.1R1.10	juniper_crpd	running	172.20.20.12/24	2001:172:20:20::c/64
3	clab-emulated-ASBBBBB-18	05368e9078d8	crpd:22.1R1.10	juniper_crpd	running	172.20.20.14/24	2001:172:20:20::e/64
4	clab-emulated-ASBBBBB-19	48ea314260ef	crpd:22.1R1.10	juniper_crpd	running	172.20.20.10/24	2001:172:20:20::a/64
5	clab-emulated-ASBBBBB-7	ed72383591df	crpd:22.1R1.10	juniper_crpd	running	172.20.20.9/24	2001:172:20:20::9/64
6	clab-emulated-Core-01	468cf7bb9eec	crpd:22.1R1.10	juniper_crpd	running	172.20.20.15/24	2001:172:20:20::f/64
7	clab-emulated-Core-02	147b0a655d8b	crpd:22.1R1.10	juniper_crpd	running	172.20.20.4/24	2001:172:20:20::4/64
8	clab-emulated-endpoint01-iperf0	87e00a860fdd	<pre>ghcr.io/ool-mddo/ool-iperf:main</pre>	linux	running	172.20.20.5/24	2001:172:20:20::5/64
9	clab-emulated-endpoint01-iperf1	d951db70b8bc	<pre>ghcr.io/ool-mddo/ool-iperf:main</pre>	linux	running	172.20.20.11/24	2001:172:20:20::b/64
10	clab-emulated-endpoint01-iperf2	f12c2034b8d0	<pre>ghcr.io/ool-mddo/ool-iperf:main</pre>	linux	running	172.20.20.2/24	2001:172:20:20::2/64
11	clab-emulated-endpoint01-iperf3	ad827e497a8e	<pre>ghcr.io/ool-mddo/ool-iperf:main</pre>	linux	running	172.20.20.16/24	2001:172:20:20::10/64
12	clab-emulated-endpoint02-iperf0	da4461baa5ae	<pre>ghcr.io/ool-mddo/ool-iperf:main</pre>	linux	running	172.20.20.8/24	2001:172:20:20::8/64
13	clab-emulated-endpoint02-iperf1	4b4092e07a6d	ghcr.io/ool-mddo/ool-iperf:main	linux	running	172.20.20.7/24	2001:172:20:20::7/64
14	clab-emulated-endpoint02-iperf2	ed93bedea93e	ghcr.io/ool-mddo/ool-iperf:main	linux	running	172.20.20.19/24	2001:172:20:20::13/64
15	clab-emulated-endpoint02-iperf3	80cc7d7aa8c5	<pre>ghcr.io/ool-mddo/ool-iperf:main</pre>	linux	running	172.20.20.13/24	2001:172:20:20::d/64
16	clab-emulated-Edge-01	405e94b03a9f	crpd:22.1R1.10	juniper_crpd	running	172.20.20.20/24	2001:172:20:20::14/64
17	clab-emulated-Edge-02	fcc1118cec96	crpd:22.1R1.10	juniper_crpd	running	172.20.20.18/24	2001:172:20:20::12/64
18	clab-emulated-Edge-03	a33eba758d13	crpd:22.1R1.10	<pre>juniper_crpd</pre>	running	172.20.20.6/24	2001:172:20:20::6/64
19	clab-emulated-Edge-04	f6a774bdc698	crpd:22.1R1.10	juniper_crpd	running	172.20.20.17/24	2001:172:20:20::11/64
+	+	+	+	+	+		+

作業前の本番環境を再現 - Step 2-2

⑤デプロイしたEmulated環境上で、Flowデータをダウンサイズした値でトラフィックの負荷をかける

\$ bash demo_step2-2.sh
<省略>
TASK [lperf client command] ************************************
changed: [docker-host] => (item=[{'node': 'endpoint02-Iperf0'}, {'source': 'endpoint01-Iperf3', 'dest_address': 'A.A.A.100', 'number': 5201, 'rate': '21955'}])
changed: [docker-host] => (item=[{'node': 'endpoint02-lperf1'}, {'source': 'endpoint01-lperf0', 'dest_address': 'B.B.B.100', 'number': 5201, 'rate': '2738'}])
changed: [docker-host] => (item=[{'node': 'endpoint02-Iperf2'}, {'source': 'endpoint01-Iperf1', 'dest_address': 'C.C.C.100', 'number': 5201, 'rate': '1044'}])
changed: [docker-host] => (item=[{'node': 'endpoint02-lperf3'}, {'source': 'endpoint01-lperf2', 'dest_address': 'D.D.D.100', 'number': 5201, 'rate': '85793'}])
PLAY RECAP ************************************
docker-host : ok=6 changed=3 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

Prometheus/Grafanaも起動しており、各コンテナのトラフィック量を確認できる。

→PNIの外部ASルータからの送信トラフィック量とPOI側の受信トラフィック量はほぼ一致しているので、正常にE2E通信できている。

