
Takuto Nagami
@logica0419

Kotaro Kawasaki
@n4mlz

今こそ学びたい
Kubernetesネットワーク

～CNIが繋ぐNWとプラット
フォームの「フラッと」な対話

自己紹介
● Takuto Nagami (@logica0419)

● 千葉工業大学 情報科学部 情報ネットワーク学科 4年

○ 研究: 合意アルゴリズム (Raft) × 暗号 (秘密分散)

● 得意技術: Go言語 / コンテナ / Kubernetes

● JANOG歴

○ JANOG56 若者支援で参加

○ JANOG57 初登壇！

自己紹介
● Kotaro Kawasaki (@n4mlz)

● 筑波大学 情報学群情報科学類 3年

● 趣味: コンテナランタイム、OS 自作、車輪の再発明

● 最近 という Linux コンテナをネイティブ実

行できる自作 OS を Rust で書いています

モダンなインフラ
チェックしてますか？

クラウドからクラウドネイティブへ
● ここ十数年で、クラウドビジネスは大躍進を遂げた

● クラウドの設計思想はクラウドネイティブへと昇華

○ クラウドで一般的になった、スケールしやすい開発

アプローチをあらゆる場所で活用する

○ オンプレ (プライベートクラウド) でも、この思想が

導入されつつある

● このクラウドネイティブなエコシステムの

中心にいるのがKubernetes (K8s)

K8s、正直わからないですよね
● 「難しい」というイメージが先行している

● やはり「プラットフォームは我々の管轄外」という考え

をしている人が多いのでは

プラットフォームチームも気持ちは同じ
● プラットフォーム「ネットワーク？守備範囲じゃない」

● ネットワーク「K8s？守備範囲じゃない」

ところで: 架け橋は用意されている
● K8sのネットワークは差し替え可能な設計

○ K8sのオリジナル開発者はGoogle

○ 自身のクラウドのネットワークに最適化できるよう

あえてどんなネットワーク技術も取り込めるように

設計している

● プラットフォームとネットワークを繋ぐ開かれた門かつ

共通言語の役割を担う部品がいくつかある

しかしそれらの部品の実態は…
● ネットワークもプラットフォームもお互いが忌避し、

両者の断絶を生む閉じた門になっている

しかしそれらの部品の実態は…
● ネットワークもプラットフォームもお互いが忌避し、

両者の断絶を生む閉じた門になっているなんて
もったいない！

OSSも銀の弾丸ではない
● オンプレであっても、OSSを組み合わせてK8sのネット

ワークを構成している現場がほとんど

○ ネットワークチームはアンダーレイのみ管理し、

K8sのネットワークは別チームがOSSで運用

● OSSは汎用性のため、SDNベース

● しかし、SDNより物理機材ベースの方が効率が良いはず

○ OSSに頼り切るのではなく、ネットワークチームが

介入して自作・改造することで効率化が図れる

K8sネットワークの自社開発・改造例
● Google Cloud: GKE Dataplane V1 / V2

● AWS: Amazon VPC CNI

● Microsoft Azure: Azure CNI

● Cybozu: Coil on Neko基盤

○ 国内のクラウドでの例はこれしか見たことがない

(公開されていないだけかもしれません)

○ ↑ この状況を変えよう！というのが今回の目的

プラットフォームとフラッと対話する
● ネットワークとプラットフォームの対話なしに、真に

効率の良いネットワークはあり得ない

● 今回のテーマ「フラッとJANOG」に合わせ、フラッと

気兼ねない対話に必要な共通言語を身につけましょう！

「プラットフォームと
ネットワークの

フラットな対話」を作る
これを今回のゴールとします！一緒に頑張りましょう

アジェンダ
● イントロダクション ←イマココ

● Kubernetesを知る

● Kubernetesとネットワーク

● Linuxのネットワークスタック

● L2/L3ネットワーク: CNI

● L4ロードバランサー: kube-proxy

● プラットフォームとの対話で広がる可能性

● まとめ

アジェンダ
● イントロダクション

● Kubernetesを知る ←イマココ

● Kubernetesとネットワーク

● Linuxのネットワークスタック

● L2/L3ネットワーク: CNI

● L4ロードバランサー: kube-proxy

● プラットフォームとの対話で広がる可能性

● まとめ

Kubernetesを知る

K8sは難しく思われがちだが
ポイントを絞れば

そこまで難しくない！
ひとまずKubernetesの世界を旅してみましょう

Kubernetesの
提供するリソース

PodPod

Pod
● 便利になったコンテナ、K8sの最小単位

● 1つのワークロードを構成する単位

○ ≒ 1つのIPアドレスでくくって良い範囲

ReplicaSet

ReplicaSet / Deployment
● Podをまとめて管理するための仕組み

● ReplicaSet: 同じ内容のPodを指定個数立てる

● Deployment: ReplicaSetを使い安全にバージョン移行

Pod Pod

Deployment

ReplicaSet / Deployment
● Podをまとめて管理するための仕組み

● ReplicaSet: 同じ内容のPodを指定個数立てる

● Deployment: ReplicaSetを使い安全にバージョン移行

ReplicaSet

Pod Pod

ReplicaSet / Deployment
● Podをまとめて管理するための仕組み

● ReplicaSet: 同じ内容のPodを指定個数立てる

● Deployment: ReplicaSetを使い安全にバージョン移行

Deployment ReplicaSet (旧)

Pod Pod

ReplicaSet (新)

Pod Pod

ReplicaSet / Deployment
● Podをまとめて管理するための仕組み

● ReplicaSet: 同じ内容のPodを指定個数立てる

● Deployment: ReplicaSetを使い安全にバージョン移行

Deployment ReplicaSet (旧)

Pod Pod

ReplicaSet (新)

Pod Pod

ReplicaSet / Deployment
● Podをまとめて管理するための仕組み

● ReplicaSet: 同じ内容のPodを指定個数立てる

● Deployment: ReplicaSetを使い安全にバージョン移行

Deployment ReplicaSet (新)

Pod Pod

ReplicaSet (旧)

Pod Pod

ReplicaSet / Deployment
● Podをまとめて管理するための仕組み

● ReplicaSet: 同じ内容のPodを指定個数立てる

● Deployment: ReplicaSetを使い安全にバージョン移行

Deployment ReplicaSet (新)

Pod Pod

ReplicaSet

Service
● 同じ内容のPod群に、均等に通信を振り分ける (L4LB)

● Pod群を1つのIPアドレスでまとめることができる

Pod

PodPod
Service

ReplicaSet

Service
● 同じ内容のPod群に、均等に通信を振り分ける (L4LB)

● Pod群を1つのIPアドレスでまとめることができる

Pod

PodPod
Service

ReplicaSet

Service
● 同じ内容のPod群に、均等に通信を振り分ける (L4LB)

● Pod群を1つのIPアドレスでまとめることができる

Pod

PodPod
Service

Podの入れ替わりで
各PodのIPが変わっても

安定した仮想IPで
アクセスできる

Serviceのタイプ

Pod

Pod

Service
ClusterIP

Service
NP / LBクラスタ外

クラスタ内

● ClusterIP: クラスタ内からの通信のみ受け付ける

● NodePort / LoadBalancer: クラスタ外からの通信も

受け付ける

Kubernetesの実態:
宣言的API と

Reconciliation Loop

宣言的なAPI
● 「これをして下さい」でなく「この状態にして下さい」

○ 「マニフェスト」で理想の状態を書く

● 暗黙知のない

安定した稼働

Reconciliation Loop
● リソースを理想の状態に持っていくための操作

理想の状態 実際の状態

Controller

比較 変更

Reconciliation Loop
● 以下の操作を一定時間ごとに繰り返す

○ 理想の状態 (宣言されたマニフェスト) を取得

○ 実際の状態を観測

○ 理想の状態と実際の状態を比較

○ 2つの差を埋めるように、実際の状態を変更する

● Controllerと呼ばれる部品がこれを担当する

● Self-Healingが簡単に実装できる

 例: DeploymentがPodになるまで
● 単純なReconciliation Loopの積み重ねで複雑性を実現

Deployment

ReplicaSet
比較

変更 Pod

ReplicaSet
Controller

変更

比較Deployment
Controller

宣言された理想の状態を保存し
Reconciliation Loopを回す

ただそれだけのシステム
ベースのアイデアは非常に単純

覚えておいてもらいたいこと
● K8sは拡張性が高いが、ネットワークの視点で見たとき

重要なリソースは少ない

○ ほとんどの内部通信は、PodからServiceを経由し

Podへ流れる

● 宣言的APIとReconciliation LoopがK8sの核

○ K8sのネットワークもこの二つに準じて設定される

必要がある

○ 手続き的な物を宣言的にする実装が必要

アジェンダ
● イントロダクション

● Kubernetesを知る ←イマココ

● Kubernetesとネットワーク

● Linuxのネットワークスタック

● L2/L3ネットワーク: CNI

● L4ロードバランサー: kube-proxy

● プラットフォームとの対話で広がる可能性

● まとめ

アジェンダ
● イントロダクション

● Kubernetesを知る

● Kubernetesとネットワーク ←イマココ

● Linuxのネットワークスタック

● L2/L3ネットワーク: CNI

● L4ロードバランサー: kube-proxy

● プラットフォームとの対話で広がる可能性

● まとめ

Kubernetesと
ネットワーク

Pod

Kubernetesを流れる通信 3種
● Pod → Service → Pod

○ クラスタ内通信

○ ノード内とノード間を考慮する必要がある

ServicePod

Kubernetesを流れる通信 3種
● 外部 → Service → Pod

○ クラスタ外からのIngress通信

○ Gateway API (L7LB) というリソースとの関わりが

深いが、本プログラムでは割愛

Serviceクラスタ外 Pod

Kubernetesを流れる通信 3種
● Pod → 外部

○ クラスタ外へのEgress通信

○ Podからのインターネット疎通を保証する

クラスタ外Pod

Kubernetesを構成する部品たち
https://kubernetes.io/docs/concepts/overview/components/ より引用

k

https://kubernetes.io/docs/concepts/overview/components/

Kubernetesを構成する部品たち
● K8sがデフォルトで用意してないものもある

k

CNI コンテナランタイム

ネットワークを担当する部品たち
● CNI と kube-proxy

k

コンテナランタイムCNI

ネットワークを担当する部品たち
● CNI

○ Pod → Pod / Pod → 外部 を担当

○ PodのL2/L3ネットワーク疎通を担保する

○ Kubernetesのデフォルト実装はない

● kube-proxy

○ Service → Pod / 外部 → Service を担当

○ 複数Podに対するL4LB (Service) を実装する

○ Kubernetesがデフォルト実装を用意している

ここからは
それぞれの部品の詳細と

実装を見ていきます
どのように「架け橋」が用意されているかにご注目下さい

アジェンダ
● イントロダクション

● Kubernetesを知る

● Kubernetesとネットワーク ←イマココ

● Linuxのネットワークスタック

● L2/L3ネットワーク: CNI

● L4ロードバランサー: kube-proxy

● プラットフォームとの対話で広がる可能性

● まとめ

アジェンダ
● イントロダクション

● Kubernetesを知る

● Kubernetesとネットワーク

● Linuxのネットワークスタック ←イマココ

● L2/L3ネットワーク: CNI

● L4ロードバランサー: kube-proxy

● プラットフォームとの対話で広がる可能性

● まとめ

Linuxの
ネットワークスタック

それぞれの詳細を見る前に
まずは前提知識となる

Linuxのネットワークをおさらい
LinuxのSDNを一度俯瞰してみましょう

Network Namespace (netns)
● Linuxの機能のうちの一つ

● 1台のマシンの中に独立した仮想のホストを作る

● netns1つにつき、1マシンと考えてよい

○ Podの (ネットワーク的な) 実体

○ それぞれ個別に、NICを生やしたりIP/MACアドレス

を持たせたりできる

Network Namespace (netns)

Node

NIC

Network Namespace (netns)

Node
Pod1

NIC

Network Namespace (netns)

Node
Pod1

Pod2

NIC

Network Namespace (netns)

Node
Pod1

Pod2

これら全てが
ホストと異なるNICリストや

ネットワーク設定を持つ

NIC

実は、親マシンのネットワークも…

Node

Host
Namespace

Pod1

Pod2

NIC

実は、親マシンのネットワークも…

Node

Root
Namespace

Pod1

Pod2

NIC

親マシンというHWの枠に
(親マシン自身のNWも含め)
区切られたネットワークが

たくさんあるイメージ

実は、親マシンのネットワークも…

Node

Root
Namespace

Pod1

Pod2

NIC

親マシンというHWの枠に
(親マシン自身のNWも含め)
区切られたネットワークが

たくさんあるイメージ

ハードウェアの境界線と
ネットワークの境界線が
別物になるということ

veth
● Linux内で仮想的に作られるイーサネットケーブル

○ 繋がったNICのペアとして生成される

● これによりnetns同士を接続することが可能になる

NIC

NIC

veth

Node

Host
Namespace

Pod1

Pod2

NIC

veth

Node

Host
Namespace

Pod1

Pod2

NIC

veth

Node

Host
Namespace

Pod1

Pod2

NIC

移動

Linux Bridge
● 仮想L2スイッチ

○ 複数のvethを接続すると、接続されたnetns同士の

Ethernet疎通・ARP解決ができるようになる

● Linuxの都合で、host namespaceと接続されたNICが

あらかじめ生成される
bridge

Linux Bridge

Node

Host
Namespace

Pod1

Pod2

NIC

Linux Bridge

Node

Host
Namespace

Pod1

Pod2

NIC

bridge

Linux Bridge

Node

Host
Namespace

Pod1

Pod2

NIC

bridge

ここまでの機能を使うと
1台の親マシンの中で複雑な

サブネット構造も作れる
たくさんのルーターが複雑に絡んだ構成も再現可能

Node

ex) 複雑なサブネット構造

Host NS

192.168.1.0/24

192.168.2.0/24

N
IC1

N
IC

2

NIC0

destiation gateway

192.168.1.0/24 NIC1

192.168.2.0/24 NIC2

0.0.0.0/0 NIC0

netfilter
● パケットをフィルタ・加工・転送できる仕組み

○ Filter

■ 特定のIPアドレス・ポート宛のパケットを落とす

○ NAT

■ 送り元・送り先のIPアドレス・ポートを変更する

● 操作方法 (フロントエンド)

○ 長らくiptablesを使って設定されていたが、非推奨に

○ 後継のnftablesへの移行が進んでいる

アジェンダ
● イントロダクション

● Kubernetesを知る

● Kubernetesとネットワーク

● Linuxのネットワークスタック ←イマココ

● L2/L3ネットワーク: CNI

● L4ロードバランサー: kube-proxy

● プラットフォームとの対話で広がる可能性

● まとめ

アジェンダ
● イントロダクション

● Kubernetesを知る

● Kubernetesとネットワーク

● Linuxのネットワークスタック

● L2/L3ネットワーク: CNI ←イマココ

● L4ロードバランサー: kube-proxy

● プラットフォームとの対話で広がる可能性

● まとめ

L2/L3ネットワーク:
CNI

CNI
● Container Network Interface

● Podを何らかのネットワークに参加させるための仕組み

CNIはKubernetesだけじゃない！
● 意外と多くのコンテナ基盤がCNIにネットワーク機能を

移譲している

CNIはKubernetesだけじゃない！
● 意外と多くのコンテナ基盤がCNIにネットワーク機能を

移譲している
Containerd (ただの
コンテナランタイム)
からもCNIは使える！

余談: CNIは (実質) Kubernetesだけ
● DockerやPodmanなど、多くの人がローカルで使うコン

テナランタイムは、独自のドライバを使って管理する

○ Containerd (Dockerの中身) を直接触る人は少ない

● 実際のユースケースは、ほぼKubernetesか類似のオー

ケストレーションサービス

● Kubernetesのネットワークのメンテナーも「CNIはK8s

に特化した仕組みじゃないのに、ほぼK8sからしか使わ

れない」と言っている

広義「CNI」 とは
● CNI仕様 (containernetworkinterface/cni)

○ コンテナ基盤がどのようにプラグインを呼び出すか

の定義

● 基盤の要件定義

○ 基盤としてどんなネットワークが欲しいのか

● CNIプラグイン

○ CNI仕様を通して操作が可能で、基盤の要件定義を

満たす実際のネットワーク実装

CNI仕様

CNI仕様
● プラグインが満たすべきユーザーとのインターフェース

が定められている

○ 設定方法

○ 操作方法

○ 複数CNIの連携

CNI仕様 - 操作コマンド
● CNIプラグインは5つのサブコマンドを備えたバイナリ

として実装される必要がある

○ ADDコマンド

○ DELコマンド

○ CHECKコマンド - 現在の状態を確認

○ GCコマンド - いらないリソースを掃除

○ VERSIONコマンド

● 特に大事なのがADDとDEL

CNI仕様 - 操作コマンド
● ADDコマンド

○ コンテナ (Pod) にIPアドレスを割り当てる

○ 指定されたコンテナを、用意されたコンテナネット

ワークの中に参加させる

Pod
Pod

Pod

Pod

CNI仕様 - 操作コマンド
● DELコマンド

○ 指定されたコンテナ (Pod) をネットワークから削除

する

Pod
Pod

Pod

Pod

CNI仕様
● 逆に言えば、この2つのコマンドが処理できればCNI

プラグインとして動く

○ BashでCNIプラグインを作った人もいます

● Kubernetesの場合CNIのコア機能をデーモンで作動させ

エントリーポイントになるバイナリを別途用意し、そこ

からデーモンのAPIを叩きにいく構成が多い

○ 複雑なネットワークライフサイクルに対処するため

基盤の要件定義

基盤側の要件定義
● コンテナ基盤によって必要な要件は違う

● 例: ローカル環境

○ 同一ホスト内でコンテナ同士の疎通が取れる

○ コンテナから外部ネットワークに出られる

The Kubernetes network model
● 各Podはクラスタ内で唯一のIPアドレスを持つ

● ホストの同じ/異なるに関わらず、NAT無しでPod同士

の通信ができる

https://kubernetes.io/docs/concepts/services-networking/

https://kubernetes.io/docs/concepts/services-networking/

The Kubernetes network model
すなわち、CNIがやらなければいけないことは

● PodにユニークなIPアドレスを割り当てる (IPAM)

● 同じクラスターのPod同士が、ホストの同じ/異なるに関

わらず、NATなしで通信できるようにする

CNIという仕様が担保する「自由」
● 逆に、これらが実現できれば使う手法はなんでも良い

○ これからいくつか例を見ていくが、千差万別

● CNI仕様はどんなネットワーク技術でも受け入れる広い

受け皿

○ クラウド事業者が元々のネットワーク基盤を活用し

やすいなど、様々なメリットがある

CNIプラグインとその実装

メジャーなOSSプラグイン
● Flannel

○ ノードを跨ぐPod間通信にVXLANを使用したCNI

● Calico

○ 各ノードの持つPod CIDRをBGPで広報するCNI

● Cilium

○ ノード内の通信にeBPFを活用したCNI

この3つを例に、それぞれのデフォルトの通信方式がどのよ

うに疎通性を実現しているか見ていきましょう

Flannel - 同じノード内
下準備

Node

Host NS

Flannel - 同じノード内
下準備: Linux Bridgeを作る

Node

Host NS
bridge

Node

Flannel - 同じノード内
Pod作成時

Host NS
bridge

Pod

Node

Flannel - 同じノード内
Pod作成時: Linux Bridgeに接続

Host NS
bridge

Pod

Node

Flannel - 同じノード内
通信時: 全てのノード内PodはL2で接続され、疎通ができる

Host NS
Pod

Pod

bridge

Flannel - 異なるノード間
下準備: 同じノード内の下準備が終わった段階

Node1

Host NS

Node2

Host NS

Flannel - 異なるノード間
下準備: 各ノードでVTEPを作り、VXLANで接続

Node1

Host NS

Node2

Host NS

VXLAN VXLAN

Flannel - 異なるノード間
下準備: 各ノードに固有のサブネットを割り当てる

Node1 - 10.1.1.0/24

Host NS

Node2 - 10.1.2.0/24

Host NS

VXLAN VXLAN

Flannel - 異なるノード間
下準備: 各ノードに固有のサブネットを割り当てる

Node1 - 10.1.1.0/24

Host NS

Node2 - 10.1.2.0/24

Host NS

VXLAN VXLAN

Pod全体のIPレンジは
10.1.0.0/16とする

Flannel - 異なるノード間
下準備: 各ノードに固有のサブネットを割り当てる

Node1 - 10.1.1.0/24

Host NS

Node2 - 10.1.2.0/24

Host NS

VXLAN VXLAN

このサブネットで
どのノードにいるPodなのか

判別する

Flannel - 異なるノード間
下準備: ルーティングテーブルにエントリを追加

Node1 - 10.1.1.0/24

Host NS

Node2 - 10.1.2.0/24

Host NS

VXLAN VXLAN

destiation gateway

10.1.1.0/24 Bridge

10.1.0.0/16 VTEP

destiation gateway

10.1.2.0/24 Bridge

10.1.0.0/16 VTEP

Flannel - 異なるノード間
Pod作成時

Node1 - 10.1.1.0/24

Host NS

Node2 - 10.1.2.0/24

Host NS

VXLAN VXLAN

Pod Pod

Flannel - 異なるノード間
Pod作成時: ノードのIPレンジからアドレスを割り当てる

Node1 - 10.1.1.0/24

Host NS

Node2 - 10.1.2.0/24

Host NS

VXLAN VXLAN

Pod - 10.1.1.1 Pod - 10.1.2.1

Flannel - 異なるノード間
通信時: 10.1.1.1から10.1.2.1へ送る時

Node1 - 10.1.1.0/24

Host NS

Node2 - 10.1.2.0/24

Host NS

VXLAN VXLAN

Pod - 10.1.1.1 Pod - 10.1.2.1

Flannel - 異なるノード間
通信時: デフォルトゲートウェイとなっているHost NSへ

Node1 - 10.1.1.0/24

Host NS

Node2 - 10.1.2.0/24

Host NS

VXLAN VXLAN

Pod - 10.1.1.1 Pod - 10.1.2.1

Flannel - 異なるノード間
通信時: ルーティングテーブルを確認

Node1 - 10.1.1.0/24

Host NS

Node2 - 10.1.2.0/24

Host NS

VXLAN VXLAN

Pod - 10.1.1.1 Pod - 10.1.2.1destiation gateway

10.1.1.0/24 Bridge

10.1.0.0/16 VTEP

Flannel - 異なるノード間
通信時: gatewayのVTEPからVXLAN経由でNode2へ送信

Node1 - 10.1.1.0/24

Host NS

Node2 - 10.1.2.0/24

Host NS

VXLAN VXLAN

Pod - 10.1.1.1 Pod - 10.1.2.1

Flannel - 異なるノード間
通信時: ルーティングテーブルを確認

Node1 - 10.1.1.0/24

Host NS

Node2 - 10.1.2.0/24

Host NS

VXLAN VXLAN

Pod - 10.1.1.1 Pod - 10.1.2.1destiation gateway

10.1.2.0/24 Bridge

10.1.0.0/16 VTEP

Flannel - 異なるノード間
通信時: gatewayのBridgeを経由し、宛先に到達

Node1 - 10.1.1.0/24

Host NS

Node2 - 10.1.2.0/24

Host NS

VXLAN VXLAN

Pod - 10.1.1.1 Pod - 10.1.2.1

Flannel - Podから外部ネットワーク

Node

NetfilterでIPマスカレードをして外部に出す

Pod

Pod

bridge
Host NS

Flannel - Podから外部ネットワーク

Node

NetfilterでIPマスカレードをして外部に出す

Pod

Pod

bridge
Host NS

Flannel - Podから外部ネットワーク

Node

NetfilterでIPマスカレードをして外部に出す

Pod

Pod

bridge
Host NS

netfilter

Flannel - Podから外部ネットワーク

Node

NetfilterでIPマスカレードをして外部に出す

Pod

Pod

bridge
Host NS

Flannel - 特徴まとめ
● 同じノード内でのL3疎通

○ Linux Bridgeで全てのPodをL2接続する

● 異なるノード間のL3疎通

○ VXLANを用いて別ノードにパケットを丸ごと輸送す

るオーバーレイネットワーク

■ 余談) WireguardなどVPNで輸送するモードも

● サブネットでノードを見分ける

● netfilterでIPマスカレードする

Calico - 同じノード内
下準備: Flannelと同じくノードにサブネットを割り当て

Node1 - 10.1.1.0/24

Host NS

Node1 - 10.1.1.0/24

Calico - 同じノード内

Host NS
Pod

10.1.1.1

Pod作成時

Node1 - 10.1.1.0/24

Calico - 同じノード内

Host NS
Pod

10.1.1.1

Pod作成時: vethでHost Namespaceと直接接続

N
IC1

Node1 - 10.1.1.0/24

Calico - 同じノード内

Host NS
Pod

10.1.1.1

Pod作成時: ルーティングテーブルにエントリを追加

N
IC1

destiation gateway

10.1.1.1/32 NIC1

Calico - 同じノード内
通信時: スタティックルーティングでL3疎通ができる

Node1 - 10.1.1.0/24

Host NS
Pod

10.1.1.1

N
IC1

destiation gateway

10.1.1.1/32 NIC1

10.1.1.2/32 NIC2
Pod

10.1.1.2

N
IC2

Calico - 異なるノード間
下準備: 同じノード内の下準備が終わった段階

Node1 - 10.1.1.0/24

Host NS

Node2 - 10.1.2.0/24

Host NS

Calico - 異なるノード間
下準備: BIRD (ルーターソフトウェア) でBGPピアを張る

Node1 - 10.1.1.0/24

Host NS

Node2 - 10.1.2.0/24

Host NS

BIRD BIRD

Calico - 異なるノード間
下準備: 自分のノードのPodサブネットを互いに広報する

Node1 - 10.1.1.0/24

Host NS

Node2 - 10.1.2.0/24

Host NS

BIRD BIRD

destiation gateway

10.1.1.0/24 lo

destiation gateway

10.1.2.0/24 lo

Calico - 異なるノード間
下準備: 自分のノードのPodサブネットを互いに広報する

Node1 - 10.1.1.0/24

Host NS

Node2 - 10.1.2.0/24

Host NS

BIRD BIRD

destiation gateway

10.1.1.0/24 lo

destiation gateway

10.1.2.0/24 lo

Calico - 異なるノード間
下準備: 自分のノードのPodサブネットを互いに広報する

Node1 - 10.1.1.0/24

Host NS

Node2 - 10.1.2.0/24

Host NS

BIRD BIRD

destiation gateway

10.1.1.0/24 lo

10.1.2.0/24 Node2

destiation gateway

10.1.2.0/24 lo

10.1.1.0/24 Node1

Calico - 異なるノード間
Pod作成時: 追加操作は特になし

Node1 - 10.1.1.0/24 Node2 - 10.1.2.0/24

Pod - 10.1.1.1 Pod - 10.1.2.1

Host NS Host NS

BIRD BIRD

NIC1 NIC1

Calico - 異なるノード間

Node1 - 10.1.1.0/24 Node2 - 10.1.2.0/24

Pod - 10.1.1.1 Pod - 10.1.2.1

Host NS Host NS

BIRD BIRD

NIC1 NIC1

通信時: 10.1.1.1から10.1.2.1へ送る時

Calico - 異なるノード間

Node1 - 10.1.1.0/24 Node2 - 10.1.2.0/24

Pod - 10.1.1.1 Pod - 10.1.2.1

Host NS Host NS

BIRD BIRD

NIC1 NIC1

通信時: デフォルトゲートウェイとなっているHost NSへ

Calico - 異なるノード間

Node1 - 10.1.1.0/24 Node2 - 10.1.2.0/24

Pod - 10.1.1.1 Pod - 10.1.2.1

Host NS Host NS

BIRD BIRD

通信時: ルーティングテーブルを確認

NIC1 NIC1

destiation gateway

10.1.1.1/32 NIC1

10.1.1.0/24 lo

10.1.2.0/24 Node2

Calico - 異なるノード間

Node1 - 10.1.1.0/24 Node2 - 10.1.2.0/24

Pod - 10.1.1.1 Pod - 10.1.2.1

Host NS Host NS

BIRD BIRD

通信時: アンダーレイから直接、gatewayのNode2へ送信

NIC1 NIC1

Calico - 異なるノード間

Node1 - 10.1.1.0/24 Node2 - 10.1.2.0/24

Pod - 10.1.1.1 Pod - 10.1.2.1

Host NS Host NS

BIRD BIRD

通信時: ルーティングテーブルを確認

NIC1 NIC1

destiation gateway

10.1.2.1/32 NIC1

10.1.2.0/24 lo

10.1.1.0/24 Node1

Calico - 異なるノード間

Node1 - 10.1.1.0/24 Node2 - 10.1.2.0/24

Pod - 10.1.1.1 Pod - 10.1.2.1

Host NS Host NS

BIRD BIRD

NIC1 NIC1

通信時: gatewayのNIC1から宛先に到達

Calico - Podから外部ネットワーク
Flannel同様、NetfilterでIPマスカレードをして外部に出す

Node1 - 10.1.1.0/24

Host NS
Pod

10.1.1.1

N
IC1

Pod
10.1.1.2

N
IC2 netfilter

Calico - 特徴まとめ
● 同じノード内でのL3疎通

○ スタティックルーティングする

● 異なるノード間のL3疎通

○ BGPで経路を広報、直接相手ノードに送るPure L3

■ オーバーレイよりも高効率

○ 【制約】全てのノードが同じL2セグメントに属して

いる必要がある

● それ以外はFlannel同様

Cilium - 同じノード内
下準備: 前二つと同じくノードにサブネットを割り当て

Node1 - 10.1.1.0/24

Host NS

Node1 - 10.1.1.0/24

Cilium - 同じノード内

Host NS
Pod

10.1.1.1

Pod作成時

Node1 - 10.1.1.0/24

Cilium - 同じノード内

Host NS
Pod

10.1.1.1

Pod作成時: vethでHost Namespaceと直接接続

N
IC1

Node1 - 10.1.1.0/24

Cilium - 同じノード内

Host NS
Pod

10.1.1.1

Pod作成時: Host側のNICにeBPFがアタッチされる

N
IC1

Node1 - 10.1.1.0/24

Cilium - 同じノード内

Host NS
Pod

10.1.1.1

Pod作成時: 別Podも同様

N
IC1

Pod
10.1.1.2

N
IC2

Node1 - 10.1.1.0/24

Cilium - 同じノード内

Host NS
Pod

10.1.1.1

N
IC1

Pod
10.1.1.2

N
IC2

通信時: 10.1.1.1から10.1.1.2へ送る時

Node1 - 10.1.1.0/24

Cilium - 同じノード内

Host NS
Pod

10.1.1.1

N
IC1

Pod
10.1.1.2

N
IC2

通信時: デフォルトゲートウェイとなっているHost NSへ

Node1 - 10.1.1.0/24

Cilium - 同じノード内

Host NS
Pod

10.1.1.1

N
IC1

Pod
10.1.1.2

N
IC2

通信時: パケットがNICに着くとeBPFプログラムが起動

Node1 - 10.1.1.0/24

Cilium - 同じノード内

Host NS
Pod

10.1.1.1

N
IC1

Pod
10.1.1.2

N
IC2

通信時: 宛先MACを宛先PodのMACに書き換える

Node1 - 10.1.1.0/24

Cilium - 同じノード内

Host NS
Pod

10.1.1.1

N
IC1

Pod
10.1.1.2

N
IC2

通信時: eBPFの機能でNIC2に直接転送

Node1 - 10.1.1.0/24

Cilium - 同じノード内

Host NS
Pod

10.1.1.1

N
IC1

Pod
10.1.1.2

N
IC2

通信時: あとはそのまま宛先Podへ

Cilium - 異なるノード間
● Ciliumは、同じノードのPod宛でなければ、eBPFプログ

ラムを抜けてLinux側に処理を投げる

● Ciliumはあらかじめ、異なるノード間のパケット転送の

ために以下のいずれかを用意する

○ Overlayモード: Flannelと同じVXLANを使う転送

○ Nativeモード: Calicoと同じBGP広報を使う転送

● すなわち、Ciliumの異なるノード間疎通はFlannelか

Calicoと全く同じ仕組みで行われる

Cilium - Podから外部ネットワーク
eBPFでIPマスカレードをして外部に出す

Node1 - 10.1.1.0/24

Host NS
Pod

10.1.1.1

N
IC1

Pod
10.1.1.2

N
IC2

NIC0

● 同じノード内でのL3疎通

○ eBPFを使って高速にルーティングを行う

● 異なるノード間のL3疎通

○ Flannel / Calicoと同じ仕組みを使う

○ 外からノードに入ってきたパケットは「同じノード

内での疎通」と同じくeBPFでPodまで運ばれる

● eBPFでIPマスカレードする

Cilium - 特徴まとめ

ところで: 汎用的 ≠ それだけでいい
● これらのOSSは汎用を目指している

○ どんな環境でも動くように、一般的な仕組みのみを

利用して実装をしている

● メジャーなOSSプラグインは、どんな所でも使える汎用

性の代わりにオーバーヘッドを許容している

○ 特にオーバーレイは顕著に遅い

○ SDNはそれなりにノードに処理を要求する

環境によって効率の良い形は違う
● なぜCNIはKubernetesにデフォルトで組み込まれずわざ

わざインターフェースになっているのか

○ クラウドベンダーが自社のネットワークに合わせて

効率の良い処理基盤を組むため

● CNIの魅力は、実装が完全にユーザー依存であること

○ オンプレ環境でネットワークが全部わかるなら、

それに効率化するに越したことはない

環境特化なCNIのインセンティブ
● 既存のアンダーレイネットワークに最適化したい

○ 既にBGP/EVPN/VRF等、成熟した基盤があるとき

● 既存の運用・監視・障害対応フローに合わせたい

○ 既存の監視基盤に乗せられる形でメトリクス・イベ

ント・トレースを最初から設計したい

● Podをもっとシームレスに繋ぎたい

○ 既存のネットワークと深く統合するとVMとPodが

シームレスに繋がったりする

環境特化なCNIプラグインの例
● GKE Dataplane V2

○ GKEでデフォルトになっているプラグイン

● AWS VPC CNI

○ EKSで使える、VPCをベースにしたプラグイン

● Coil on Neko

○ Cybozuが開発しているプラグイン

それぞれの概要を軽く見ていきましょう

GKE Dataplane V2
● GKEの開発チームがCiliumをカスタマイズしたもの

● 同じノード内でのL3疎通

○ Ciliumの仕組みをそのまま用いる

● 異なるノード間のL3疎通

○ 準備: アンダーレイネットワークに設定を流し込む

○ 同ノード内のPod宛でなければそのまま外に出す

○ アンダーレイネットワークがルーティングする

GKE Dataplane V2 - 異なるノード間
Pod作成時: アンダーレイネットワークに設定を流し込む

Node1 Pod1

Host NS NIC1

Node1 Pod2

Host NS NIC1

GKE Dataplane V2 - 異なるノード間
Pod作成時: アンダーレイネットワークに設定を流し込む

Node1 Pod1

Host NS NIC1

Node1 Pod2

Host NS NIC1
Pod1、Pod2の

経路情報をCNIが教える

GKE Dataplane V2 - 異なるノード間
Pod作成時: アンダーレイネットワークに設定を流し込む

Node1 Pod1

Host NS NIC1

Node1 Pod2

Host NS NIC1
Pod1、Pod2の

経路情報をCNIが教える

このような仕組みで
ただパケットを外に出すだけで

勝手に相手がいるノードに
届く状態が実現される

Amazon VPC CNI
● AWS VPCとの連携に非常に強いCNI

● VPCの中からPodのIPアドレスが割り当てられる

○ ノードの固定サブネットが無いので、アドレス空間

の効率良い利用ができる

● 疎通性の確保もVPCを通して行われる

○ 詳細はあまり公開されていない

● 同じVPC内にいれば、VM等と直接通信ができる

Coil
● CybozuでNeko基盤を作っているチームが開発している

オープンソースのCNI

● Neko基盤内では、Cilium & BIRDと組み合わせて運用

● 同じノード内でのL3疎通

○ Ciliumの仕組みをそのまま用いる

● 異なるノード間のL3疎通

○ Calicoと同じくBIRDからBGPで経路広報するが、

アンダーレイネットワークに経路を流す

Coil - 異なるノード間

Node1

Host NS

Node1

Host NS

下準備: BIRDでアンダーレイネットワークとBGPピアを張る

BIRD BIRD

Coil - 異なるノード間

Node1

Host NS

Node1

Host NS

下準備: Podサブネットを全体で互いに広報する

BIRD BIRD

CNIはどんな実装も受け入れる
柔軟な思想の表れであり

様々な実装がある
皆さんも馴染みのある技術が多かったのでは

アジェンダ
● イントロダクション

● Kubernetesを知る

● Kubernetesとネットワーク

● Linuxのネットワークスタック

● L2/L3ネットワーク: CNI ←イマココ

● L4ロードバランサー: kube-proxy

● プラットフォームとの対話で広がる可能性

● まとめ

アジェンダ
● イントロダクション

● Kubernetesを知る

● Kubernetesとネットワーク

● Linuxのネットワークスタック

● L2/L3ネットワーク: CNI

● L4ロードバランサー: kube-proxy ←イマココ

● プラットフォームとの対話で広がる可能性

● まとめ

L4ロードバランサー:
kube-proxy

ReplicaSet

【復習】Service
● 同じ内容のPod群に、均等に通信を振り分ける (L4LB)

● Pod群を1つのIPアドレスでまとめることができる

Pod

PodPod
Service

kube-proxy
● Serviceを担当するコンポーネント

● Kubernetesがデフォルトで持っている

● kube-proxyのやる事

○ 宛先IPアドレスがServiceの通信があったら、所属

する任意PodのIPでDNATする

○ 書き換え先のPodのバランスをいい感じにする

kube-proxyの実装方式
● 基本的にはnetfilterを利用してNATしている

○ kube-proxyは保存されているServiceの定義を監視

してNATルールを流し込むだけ

○ 実際にプロキシしているわけではない

● 現在のデフォルト: iptablesを通して設定

● これから: nftablesへの移行が進む (現在ベータ)

kube-proxy

Node

Pod
Pod A

Pod B

Service

kube-proxy

Node

Pod A

Pod B
Pod

src: Pod
dst: Service

Service

kube-proxy

Node

Pod A

Pod B
Pod

でも実際の
マシンは無い

src: Pod
dst: Service

Service

kube-proxy

Node

Pod A

Pod B
Pod

src: Pod
dst: Service

Service

netfilter

なんとか
します！

kube-proxy

Node

Pod A

Pod B
Pod

Service

src: Pod
dst: Service Pod A

netfilter

監視

kube-proxy

Node

Pod A

Pod B
Pod

Service

src: Pod
dst: Pod A

kube-proxy

Node

Pod A

Pod B

Service

src: Pod
dst: Pod A

Pod

ここまでやれば
あとはCNIの仕事

kube-proxy

Node

Pod A

Pod B

Service

Pod

src: Pod
dst: Pod B

kube-proxy

Node

Pod A

Pod B

Service

src: Pod
dst: Pod B

Pod

kube-proxyの役目は
Serviceに属するどこかの

PodにDNATするだけ

【復習】Serviceのタイプ

Pod

Pod

Service
ClusterIP

Service
NP / LBクラスタ外

クラスタ内

● ClusterIP: クラスタ内からの通信のみ受け付ける

● NodePort / LoadBalancer: クラスタ外からの通信も

受け付ける

外部から通信を受け付けるService
● NodePort

○ 30000-32767のうち1つのポートを割り当て、全

ノードでそのポート宛の通信を受け取る

● LoadBalancer

○ Nodeportと同じ環境をそろえる

○ 外部L4LBと連携しクラスタ外からアクセスできるIP

アドレスを割り当て、LBから ↑ で用意したポート

にロードバランシングする

Type: NodePort
Service

LB

監視

Pod

netfilter

Pod

netfilter

Type: NodePort
Service

LB

ポートを1つ
割り当て

そこからの通信を
キャッチする

監視

Pod

Pod

netfilter

netfilter

Type: NodePort
Service

LB

監視

Pod

Pod

netfilter

netfilter
クラスタ外

Type: LoadBalancer
Service

LB

監視

Pod

Pod

netfilter

netfilter外部L4LB

Type: LoadBalancer
Service

LB

監視

Pod

Pod

netfilter

netfilter外部L4LB

Type: LoadBalancer
Service

LB

監視

Pod

Pod

netfilter

netfilter外部L4LB

クラスタ外から
アクセス可能な
IPアドレスを

割り当て

Type: LoadBalancer
Service

LB

監視

Pod

Pod

netfilter

netfilter外部L4LB

クラスタ外

外部L4LB
● Type: LoadBalancer用の外部L4LBは、Kubernetesが

デフォルトで用意していないコンポーネント

○ 既存の基盤に合わせて選定 or 自作の必要がある

● 実装例

○ MetalLB

■ オンプレ環境を想定した汎用OSS

○ AWS Load Balancer Controller

■ AWSのNLBを使った実装

アジェンダ
● イントロダクション

● Kubernetesを知る

● Kubernetesとネットワーク

● Linuxのネットワークスタック

● L2/L3ネットワーク: CNI

● L4ロードバランサー: kube-proxy ←イマココ

● プラットフォームとの対話で広がる可能性

● まとめ

アジェンダ
● イントロダクション

● Kubernetesを知る

● Kubernetesとネットワーク

● Linuxのネットワークスタック

● L2/L3ネットワーク: CNI

● L4ロードバランサー: kube-proxy

● プラットフォームとの対話で広がる可能性 ←イマココ

● まとめ

プラットフォームとの
対話で広がる可能性

環境特化なネットワークを選択肢に！
● メジャーなOSSは、どんな所でも使える汎用性の代わり

にオーバーヘッドや複雑性を許容している

○ SDNはそれなりにノードに処理を要求する

○ 設定項目も多くなりがち

● K8sのネットワークは差し替え可能な部分が多い

○ 自分たちのネットワークの状態に合わせて、最適な

ものを選ぶ/作ることができる！

● この実現のためには、対話が不可欠

プラットフォームと対話しよう
● 特にCNIはお互いの責任を分割するツール

● ブラックボックスから対話のための共通言語へ

● 「どちらも触れない」から「どちらも触る」にしたい

実はプラットフォーム方面の活動も…
● 昨年11月にあった、Kubernetes等クラウドネイティブ

なインフラに関するカンファレンスCNDW2025にて

「CNI徹底解説」というタイトルでNagamiが登壇

● プラットフォームとネットワーク双方から「共通言語」

を広めるのが目標

○ 何か良いアイデアがあればぜひ教えて下さい

まとめ

今日はこんなお話をしました
● イントロダクション

● Kubernetesを知る

● Kubernetesとネットワーク

● Linuxのネットワークスタック

● L2/L3ネットワーク: CNI

● L4ロードバランサー: kube-proxy

● プラットフォームとの対話で広がる可能性

● まとめ

プラットフォームとの
「フラっと」な対話で

共にスケールする基盤を！
もっとたくさんの詳細があります、入口になれば幸い

ありがとう
ございました

参考になれば幸いです

【最後に】議論ポイント
● 我々はプラットフォーム側の人間なので、ネットワークエ

ンジニアの視点を分かり切れていない

● ネットワークとプラットフォームはどのように関われるか

について色んな意見が聞きたい

○ ex) PF側・NW側視点でのCNI選定基準

○ ex) CNI改造・自製の判断基準、協力の仕方

○ ex) 責任分界点はどこに置くべきか

○ ex) コンテナネットワークの未来のビジョン

