

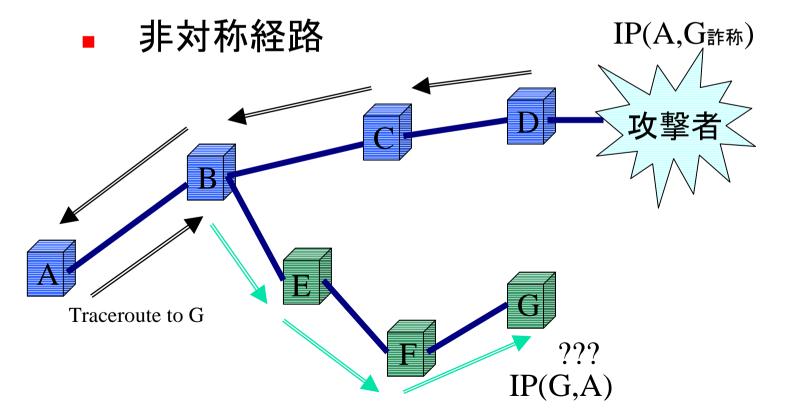
DDoS防御にむけて

~IP Tracebackの現状と課題~

おおえまさふみ < masa@fumi.org> 奈良先端科学技術大学院大学 情報科学研究科

はじめるまえに

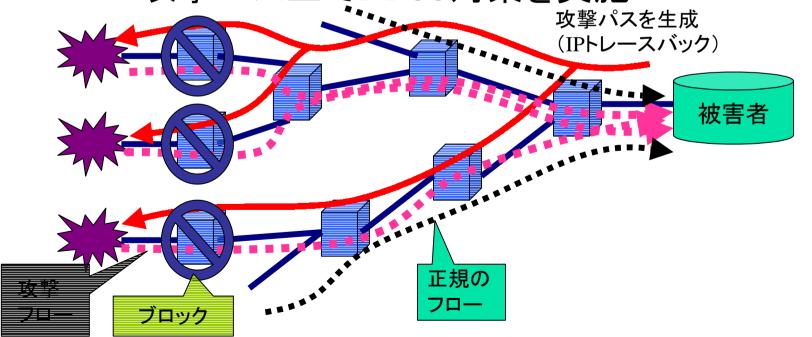
- ■率直な意見が聞きたい
 - 現場(ISP)はどう思っているのか?
 - ▶学術側の人間の考え
 - 現場と仲良く研究開発を進めたい.
 - 今ないもの何か?
 - IETFの標準化に向けて
 - ・対策網の構築


DoS攻撃と対策

- ・脆弱性をつくもの
 - Code Red等
 - システムへの対策
 - ベンダー提供によるパッチ
 - 該当サービスの停止 etc.
- トラフィック集中によるもの (対象)
 - 分散型DoS攻撃(DDoS attack)
 - ■トラフィック(攻撃フロー)の特定と遮断

トラフィック集中型DoS(特徴)

- 発信元アドレスが詐称
 - 経路特定にtracerouteは使えない

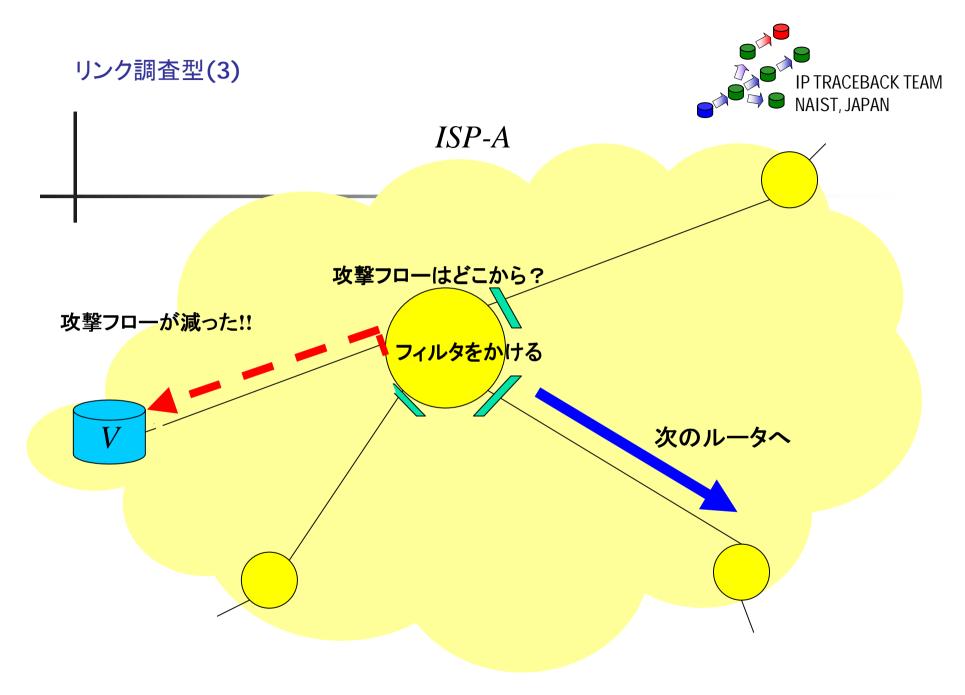

対策トラフィック集中型DoS

- 攻撃フローの経路特定
 - ISPや,企業,研究・学術機関をまたがる追 跡
 - 境界を越える追跡における時間・労力コスト
 - ポリシーの違い・国・時差 etc.
- 対策時間を必要とする
 - 対策時間の増加=被害量(額)の増加

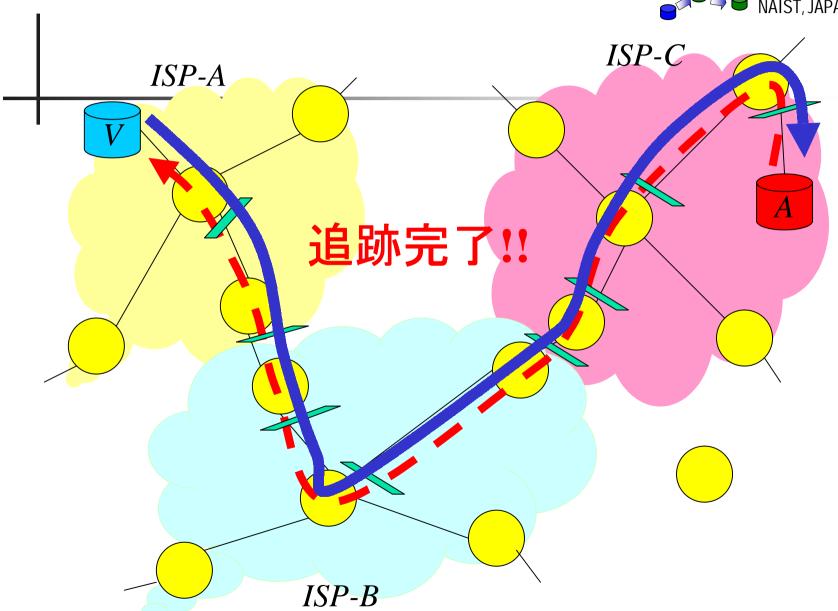
IPトレースバック

- 攻撃パス/攻撃ノードの探索手法
 - ネットワーク上の付加機能
 - →攻撃パス上でDDoS対策を実施

関連研究


- ■手法の分類
 - ■リンク追跡型
 - 逆探知パケット型
 - マーキング型
 - ダイジェスト型

リンク調査型

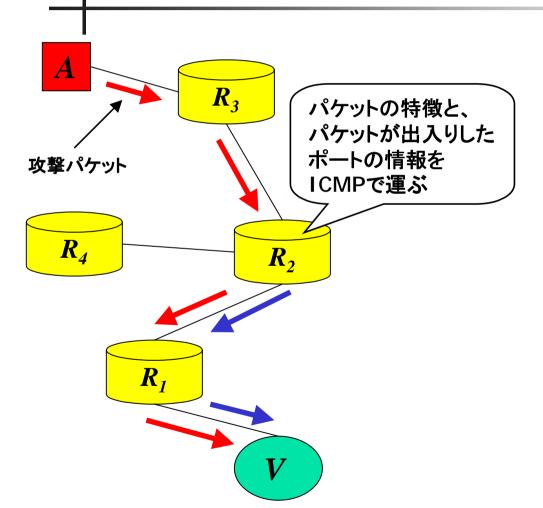

- 攻撃フローのモニタリング(従来型)
 - 流入・流出インターフェースの特定
 - ルータ毎に繰り返す事で攻撃フローを追跡

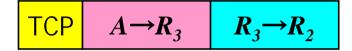
リンク調査型(2) IP TRACEBACK TEAM NAIST, JAPAN ISP-C ISP-A **-**:DoSフロー ISP-B 9

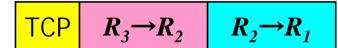
リンク調査型(4)

リンク調査型(5)

- 改善手法(Stoneら)
 - 境界ルータから追跡ルータへのトンネル構築
 - 攻撃フローを1点に集約化して調査
 - ■短時間で追跡可能
 - ■他組織と連携が必要
 - 攻撃フローの特徴抽出が重要




逆探知パケット型


- 攻撃フロー特定に専用パケットを使用
- ICMPトレースバック(IETF-ITRACE-WG提案)
 - 各ルータが確立Pに従ってパケットを選定
 - 通過ルータのアドレス等記録したiTraceメッセージ (ICMP)を「確定された」パケットのDstアドレスへ送出
 - iTraceメッセージから攻撃パスを生成
- 追跡用トラフィックが生成
 - 0.1%以内に押さえる (internet-draft)

ICMP Traceback Message

TCP
$$R_2 \rightarrow R_1$$
 $R_1 \rightarrow V$

特徴がTCPのパケットの アタックパスは

$$< A, R_1, R_2, R_3, V >$$

マーキング型

■ IPトレースバックに必要な情報を記録

- Savageらの手法
 - 識別子フィールドへ記録
 - ■前後のルータ関係等
 - 距離(ルータ毎に加算)
- Songらの手法
 - Savageらの脆弱性を改善
 - 同一距離における攻撃ノードの把握能力

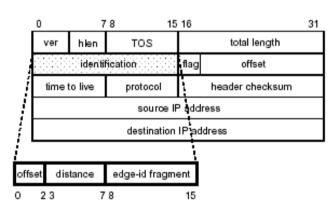
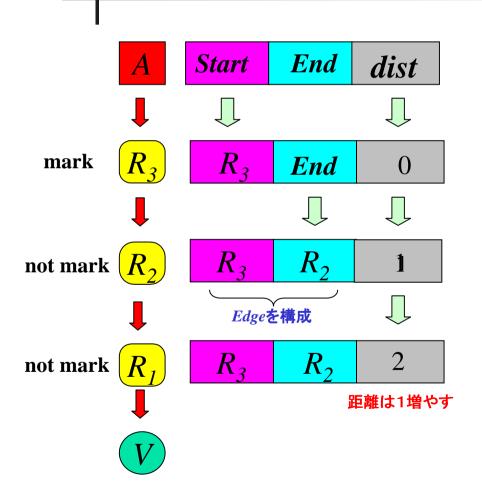
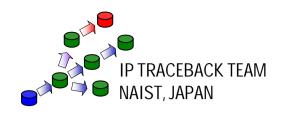




図2 識別子フィールドを利用したマーキング

マーキング(Savageら)



集まったエッジサンプルを並べる

Attack path = $\langle V, R_1, R_2, R_3, R_6, A \rangle$

ダイジェスト型

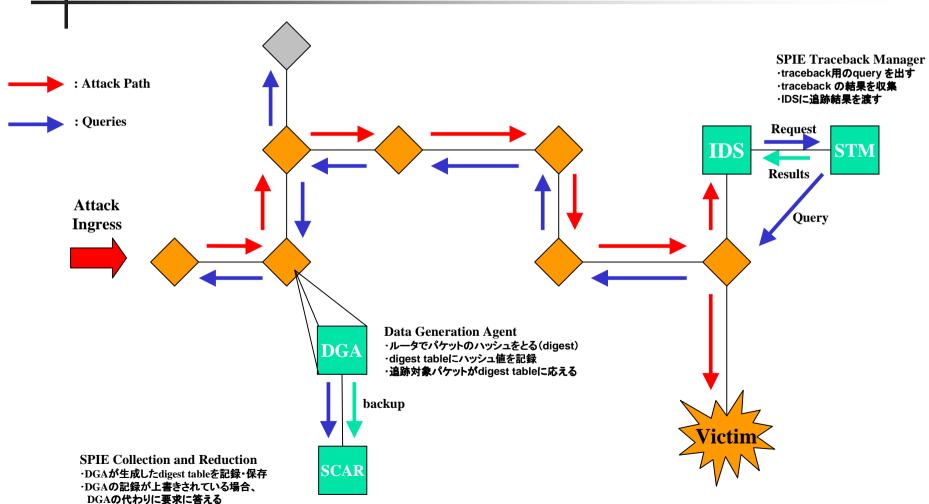

- BBN社がSPIE(Source Path Isolation Engine) として提案
- 効率よくパケットの通過ログを記録
 - 通過するパケット(ダイジェスト化)の特徴を記録
- 1パケットでも追跡可能
 - ■ログ記録システムへの攻撃
 - 組織内追跡

図3 パケット P とハッシュ関数 H からのビットマップ の生成


SPIE (Source Path Isolation Engine)

比較(欠点)

- ICMPトレースバック
 - メッセージの正しさの証明が難しい
- Marking
 - フラグメントやIP sec、IPv6と互換性がない
 - 情報理論駆使・抗トレースバック攻撃への弱さ
 - 精度を上げるには上流ルータのマップが必要
- SPIE
 - 実時間追跡に制約がかかる
 - ルータのメモリ量
 - IP secなど変形パケットの記録がルータでボトルネックに
 - ログ収集用のホストSCARへの攻撃に脆弱
 - 大規模な追跡機構

共通する問題点

- ISP間の密接な協力体制が必要
- ■トポロジーなどの秘密情報の漏洩
 - ICMPとマーキングは勝手にトポロジー情報が 流出
- ▶大規模な認証機構
 - 認証が必要な対象:被害者、パケット、エージェント間、ISP間

共通する問題点(2)

- スケーラビリティ
 - 配備されていないISPからの攻撃は特定にまで至らない
- ・攻撃手法の進化
 - 抗IPトレースバック攻撃
- 各手法の適応対象
 - ネットワークの規模や費用
- 単一手法による世界制覇を前提

提案手法(奈良先端)

- 階層型IPトレースバック手法(概念)
 - ネットワーク規模に分けてトレース範囲を分離
 - iIP(Interior)トレースバック
 - 組織内(AS内)トレースバック
 - eIP(Exterior)トレースバック
 - 組織間(AS間)トレースバック
 - iIP/eIPトレースバックの手段は問わない
 - ■追跡対象の規模に依存
 - iIP/eIP間の連携APIを定義するのみ

eIPトレースバック

- 攻撃ノードの存在するASを特定する
 - ASを特定するためのIPトレースバック
- 大まかな攻撃ノードの特定
 - 大まかに攻撃トラフィックを遮断
 - ■早期に被害を緩和

IIPトレースバック

- 攻撃ノードのIPアドレスを特定
- 攻撃フロー(ノード)を通過ルータ特定
 - お金が無ければリンク検査型?
 - ダイジェスト方式でもよいでしょう.
 - eIPトレースバックからの情報を元に追跡
 - APIを経由→ iIPトレースバック駆動

ITMネットワーク

- eIP/iIPトレースバック間の連携用
- EGP(BGP)信頼関係に基づく構築
 - peerを関係のお隣ASはお友達

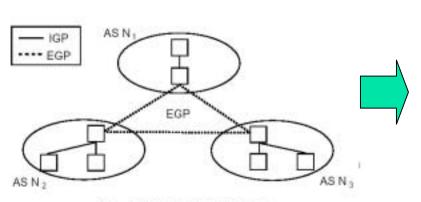


図 4 IGP と EGP の階層関係

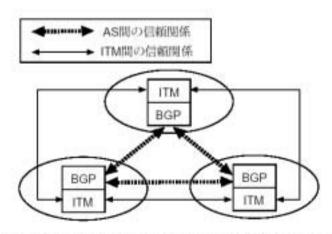
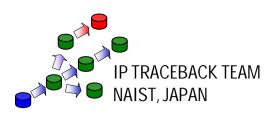



図7 ITM ネットワーク: ITM の相互接続による形成

IPオプション・トレースバック

- eIPトレースバックの1手法
- IPv6での設計(v4も計画中)
- ITMネットワークを利用して攻撃パスを構成
- 逆探知パケット方式
 - ASから流出するパケットを対象
 - 確立Pに従って抽出
 - DUPパケット生成し、IPオプションを付加(ICMPではない)
 - AS番号を記録
 - 抽出パケットを元に逆探知パケット生成

IPオプション・トレースバック(2)

- IPv6終点オプションヘッダ(記録)
 - ルータアドレス・抽出パケットの送信元アドレス・鍵識別番号(Key_No)・HMACデータ
 - HMACデータ
 - =(Key(Key_No)+ 通過AS番号)

図 6 終点オプションヘッダにおけるトレースバックオプ ションの構成

追跡シナリオ

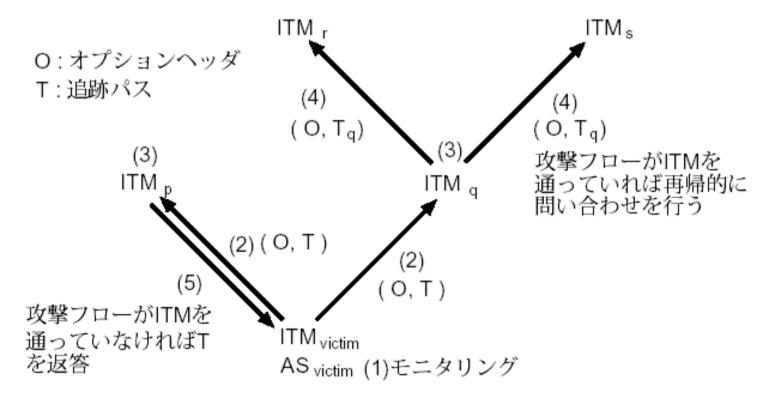


図 8 追跡 (攻撃) パス T の生成過程

標準化動向

- IPPT-BOF(ops)
 - チェア: C.Partridge (BBN.COM)
 - BBN.COM主体によるトレースバック連携プロトコルの標準化(Message Exchange の標準化)
 - BBN提案のダイジェスト方式を前提
 - WGへの昇格を考えている.
- iTrace-WG(int)
 - チェア: S.Bellovin
 - ICMP Traceback方式/Intention ICMP Traceback方式
 - 実用的方向性が弱い。

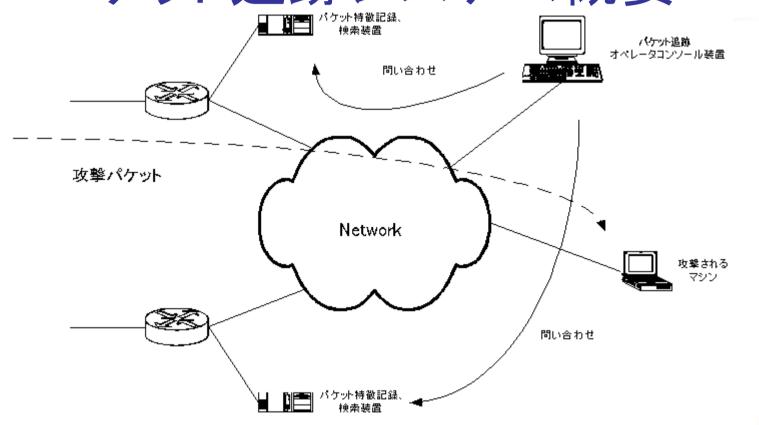
今後の計画

- IPオプショントレースバックの改良
 - IPv4対応
 - 流入トラフィックへの逆探知パケットの生成
 - 隣ASが対応していない場合の対策
- ITM間連携プロトコルの設計
 - eIP/iIP間のAPI
 - 追跡対象フローの特徴通知
 - ■追跡依頼・返答

等々

今後の計画(2)


- ■実装
 - プロトタイプ実装(eIP)
 - 公開(IETF-53前(2末)を予定)
 - Network Processor ベースのハードウエア
 - ■横河電機(iIP)
- 公開情報&連絡先
 - http://iplab.aist-nara.ac.jp/


パケット追跡システム

- ■横河電機との共同研究
- ソースアドレス偽造したパケットが、どこを 通ったかを追跡する
- Hash Based IP Traceback 手法に基づく
- 複数のパケット記録Box と、コンソール
 - SWのミラーポートに接続

パケット追跡システム概要

特長

- ソースアドレス偽造された、IP パケットを追 跡可能
- 既存のネットワークにアドオンして監視
 - → ネットワークトポロジを変更しない
- パケットを書き換えない
 - 助ける 既存の通信に影響を与えない
- 必ず記録する(確率的記録ではない)
 - ⇒ 少量の攻撃パケットも追跡可能

ステータス

- 現在開発中
 - 奈良先端科学技術大学院大学と共同研究
- Welcome
 - ニーズをお持ちのバックボーン管理者の方
 - ■ともに仕様を考え悩んでくれる方
 - フィールドテストの場を提供してもよい方
- 連絡先(開発メンバー)

Traceback@rant.jp

